Airtorch® Applications
Climate change is one of the most significant challenges of our time. Changing to efficient electric methods with the zero-emission green transition could spur huge economic gains as the world looks to curb climate change. The compact Airtorch® can eliminate fossil-fuel heating, rapidly aid deep decarbonization, and create flexible, Compact MW units available/ efficient chemical and fiber drying processes directly or as thermal storage batteries.
Industrial Products and Fuels for a Decarbonized Economy.
Industrial sectors such as manufacturing, energy, cement, drying, food, and chemicals actively seek sustainable alternatives to conventional heating equipment.
MHI offers low compact KW to high MW Airtorch® systems for the industrial sector that can aid in significant decarbonization with improved energy efficiency.
The Electric Airtorch® is a unique low-pressure-drop patented device used to heat air quickly and other process gasses to a temperature ranging from 20°C to 1300°C. Use the Airtorch for electrifying high-temperature industrial processes in iron-making, alumina calcination, ore drying with controlled humidity, cement, bauxite roasting and other feedstocks, and lime production. Large Airtorch® uses from KW to MW are seen in Jet Engine Test Beds, Automotive Engine Test Beds, Chemical Synthesis, Clay calcination, Cement Industry, Drying, or Direct Reduction Processes. They find use in simulating heating in replacing combustion burners and preheaters, test rigs, running power plants, large die heat-up, chemical, and metallurgical processes, fuel production, and replacing fossil fuel calcination & kiln firing in several industries, including cement making, system combustion/flow simulation, additions to cement clinker furnaces, curing, drying, or bonding of paper boards, removal of inorganic and organic salts, fuel cells, thermal energy storage, general heat treatment for bending and de-flashing/deburring, drum heating, plastic rolls, welding of plastics, soldering disinfection, drying, rapid paper, and pulp production, burner burn off, chemical reactions for environment and sustainability applications, and general uniform heating requirements. With devices like the Airtorch and similar high-value equipment, there is the potential to decarbonize roughly 80% of U.S. petroleum refining subsector CO2 emissions by 2050.
What is a decarbonized economy? A decarbonized modern economy has low greenhouse gas emissions from its industrial, transportation, and power generation sectors. The main impact of decarbonization can come from converting combustion methods to electrical methods. It is straightforward to convert combustion heating and drying to electrical heating and drying. An alternative way to decarbonize is to capture the CO2 and methane emissions and convert them into valuable products, even to CO (a toxic gas) with plasma catalysis. For 1 kWh of energy use or energy conversion by electric methods instead of burning carbon-containing fuels, about 0.8-2.2 lbs. of CO2 production can be prevented. A 100 KW device can prevent 80 – 220 lbs. of CO2 from being made every hour when electrical heating is employed instead of combustion or fossil fuel heating.
Case Study: A 14.2 MW gas-combustion process air heater to a 12 MW MHI Electric Airtorch is a $3 million per year saving assuming 12 months, 30 days a month, and 24-hour day. (The additional social cost for the CO2 produced by burning natural gas has not been factored in this calculation). Review energy calculations.
With over 5 billion metric tons of CO2 emissions in the United States in 2017, the utilization and conversion of CO2 into value-added chemicals, fuels, polymers, building materials, and other carbon-based products represent an economic opportunity. The MHI Airtorch and MHI steam generator products can be considered for such use.
More on Energy and Cost Savings with an MHI process gas heater
Thermal processing companies worldwide have pressures to lower their operations’ environmental impact and make them more sustainable. These pressures come from governmental regulations and societal expectations, resulting in increasingly stringent requirements. Many companies are accelerating their “green” initiatives and programs to leap ahead of these regulations and lead this transformation for their industry. MHI Airtorch® and MightySteam® can assist your various initiatives. Decarbonize the industrial sector, the agricultural industry, and the building sectors. Cut emissions and decarbonize with MHI products. For energy benefits in any application, from comfort heating to heavy industrial processes, the Airtorch® is a great approach when tackling climate change.
Why Use Electric Process Gas or Steam Heaters?
- The energy cost produced by electric or combustion methods is not that different when the social cost of harmful CO2 is considered.
- Electric heating gives precise temperature control with fast response times.
- Very low-pressure drops save considerable energy.
- Electric heating is ideal for uniformly heating gases and other fluids to high temperatures.
- Unlimited turndown is feasible with precision with electrically heated Airtorch® systems. For example, MHI Airtorch® units of 240 KW or 16 MW offer a 90 % turndown when required.
- Suitable for use in hazardous areas, including external use.
- No in-plant emissions. The most important crisis facing us is the ecological crisis caused by emissions. Emission control is addressed using the best efficiency (system and rules) and the new technologies that can benefit from high-efficiency electrical energy.
- Contact MHI.
Home Page: Process Air and Process Gas Airtorch® Models.
WHY CHOOSE THE BEST AVAILABLE? Did you know that devices that can be used ~1000°C could last exponentially longer at 700°C than devices rated to only 700°C? MHI can often provide a full warranty for an Airtoch® that covers the heaters. Check testimonials from customers. Outlet temperature 20°C-1300°C, inlet depending on the model -40°C, 100°C, 450°C, 800°C, choice of shell pressure. New high-value duct modules for transforming combustion ovens to electrically powered air heating. As MHI for the best warranty on heating systems. The production of chemical energy carriers utilizing electrical energy from renewable sources is essential for the future energy system. How can MHI help rapidly heat profitable gases to optimize output? Contact MHSubstitutesute for combustion preheating or heat without chemical wastage, e.g., methane or other petrochemical gases can be heated to have the least residence time to prevent coke formation.
Home Page: Process Air and Process Gas Airtorch® Models
Process Air and Process Gas Airtorch® Models. (120/240/400/480/600V)
MHI Airtorch® models offer extremely high energy efficiencieTheyhey are manufactured to ASME specification-compliant pressure vessels/ schedules – built by an experienced company with patented technology where required. Airtorch® models range from 1 KW to several MW. The smaller KW models are LTA, VTA and MTA925, and GTA925. The larger flow models are MVTA and GTA (high-pressure) classes. MHI staff and technicians are committed to excellence.
To help with COVID and other bacterial or virus losses, we encourage our customers to support front-line workers at hospitals, testing clinics, and other healthcare facilities to fight against the coronavirus and the COVID-19 disease with innovative uses of the steam products and Airtorch® Products for rapid field sterility.
Let us help with Industrial Decarbonization.
DECARBONIZE
Decarbonizing the industrial sector is very important to address our climate crisis. Almost a third of the greenhouse gas emission is from the industrial sector. CO2 emissions can be reduced quickly, as can emissions from the fuel-making, general industrial heating, and chemical and steam sectors. The first steps in decarbonization are eliminating heat production by fossil-fuel-fired combustion and relying on electrical energy instead for heating. This can significantly impact CO2 emissions; e.g., the cement industry produces about 10% of global human-made CO2 emissions, of which about 60% is from the chemical process and 40% is from burning fuel.
Although there may be a cost to changing to high-quality clean energy, the benefits are astounding. Greenhouse emissions from American, European, and other regions have already decreased by 23% – between 1990 and 2018, while the economy grew by 61% (click for reference). Not bad. But much more can be done using the Electric Airtorch or the MightySteam(R) steam systems.
Methane emissions are of great concern for global warming and climate change. Did you know that Methane has a global warming potential of almost 25 compared to carbon dioxide? Uses of the Airtorch include cold gas to be cracked (the cracking process), i.e., for Naphta or Ethane for ethylene production. If one is considering bio-fuels or valuable products like carbon monoxide (CO), formic acid (HCOOH), methane (CH4) and ethylene (C2H4), or ethane (C2H6) from CO2 conversion – please get in touch with MHI with your requirements.
What is Green Steel? Steel that does not contain carbon. Iron ore is reduced at about 850C with hydrogen to make such steels. The carbonaceous (coke) reduction methods commonly used to produce iron are not employed when making green Steel. Consequently, there is no carbon present in such iron or Steel. Hydrogen-based direct reduction uses hydrogen instead of coal as a reagent to reduce iron ore to pig iron, eliminating the CO2 emissions from the equivalent process in a traditional blast furnace.
The microstructure of Steel is conditioned such that it competes with carbon steel with valuable properties of strength, flexibility, and toughness. Green steel production also avoids secondary carbon-reducing processes like the Basic Oxygen Process. Green steels could include alloying elements like hydrogen, oxygen (see above for Fe/FeO composites), nitrogen or boron, aluminum, manganese, vanadium, molybdenum, etc. The chart below shows the power of critical carbon-containing steels and some without carbon.
Electric heating improves energy efficiency. Electric heating prevents CO2, NOx, and SO2 emissions associated with fossil-fuel combustion heating. Recent estimates suggest that global carbon dioxide emissions from fossil fuels will hit a record high of 36.6 billion tonnes in 2022, corresponding to a record high of 442 ppm in the atmosphere.
Energy Savings and Project Costs with the Electric Airtorch. Click here.
Case Study: An example of one company saving significant energy costs by converting from combustion to electricity. Did you know that the social cost of producing even one ton of CO2 and Methane can be very high? The social cost of methane emissions into the atmosphere is estimated at ~ U.S. $1,756 per short ton by the U.S. Interagency Working Group on the Social Cost of Greenhouse Gases.
Electric heating is controlled and offers process benefits in even the most challenging applications.
Typical Applications for Airtorch®:
- Several applications are in high-pressure test stands for automotive and jet engines—key Features: Long-lasting, high temperature, high energy conversion, high pressure, and compactness.
- Electric hot air generators are often used to heat commercial and industrial environments. Several applications are in energy-efficient comfort heating. Key Features: Compact, long life, and rapid heating.
- Several applications in chemical processes and drying. Key Features: Energy efficient, extremely compact, controlled high temperature, and rapid heating. MHI Airtorch® nano-structuring is used for various gas combinations like hydrogen, methane, or syn-gas. Combined catalysis action is enabled.
- Use in Ammonia, Cement, Steel, Aluminum, and General Heating Industries
Each type of application has its unique control system designed for that market.
Case Study:
Kilograms of CO2 emissions per million KJ (kilojoules) (Source) | |
Natural Gas (the main component is methane) | 50.4 |
Jet Fuel | 68.8 |
Bituminous (coal) | 88.8 |
Diesel and Home Heating Fuel (Distillate Fuel Oil) | 59.9 |
Gasoline and Ethanol Blends | 64.1 |
A customer replaces his 16.5 MW natural-gas hot-air generator with an 11.5 MW electric hot-air generator (Airtorch®). Both units convert 28000 SCFM from room temperature to 700°C. What are his energy-saving and CO2 production savings? Answer: Considering 17 psi savings in pressure drop, a unit efficiency from the improved new technology, and the elimination of the combustion process, the user could save ~40% energy. Please contact MHI. for details.
Summary: The MHI Airtorch® can save up to 52800KWhr of energy daily and prevent producing 57954 Kg per day of CO2 (assuming an 8-hour day). For details, Contact MHI.
CO2, SO2, and Nox prevention with energy savings. Did you know that each such unit can cause savings estimated at $44 Million over a ten-year lifetime? Please contact MHI. for details.
Sectors for Decarbonization
Most of the industry’s GHG (Green House Gases) emissions, 90 percent, consist of CO2. Almost 40% of the industry’s CO2 emissions today (2018) result from manufacturing the four industrial commodities—ammonia, cement, ethylene, and steel. A significant amount also comes from the general heat-treating industry.
Decarbonize chemicals and fuel making. Contact MHI.
Preheat to reduce fuel/ carbon for oxidation. Contact MHI.
Decarbonize Kils and Ovens for brick making to tiles. Contact MHI.
Decarbonize Iron and Steel (see below). Use for primary and secondary aluminum production. Heat H2 gas economically. Contact MHI.
Decarbonize food and beverage Products. Contact MHI.
Decarbonize all Furnace Preheating. Contact MHI.
Decarbonize/Calcine Alumina (Bauxite), Cement, Clay, Lithium, and Other Ores. Lime and Concrete (see below). Contact MHI.
Decarbonize Paper and Forest Products (see compact energy-efficient drying technologies below). Contact MHI.
GTA. MegaWatt Airtorch with robust holding ears for easy mounting.
CHEMICAL REACTIONS
Low-carbon energy inventions and innovations are essential to combat climate change, promote economic competitiveness, and achieve strong energy security. MHI’s rapid heat and high-temperature gas and steam systems are tested for several uses, like eliminating combustion heating and enabling new chemical reactions. Closing the carbon cycle using excess CO2 is an appropriate intermediate step toward a carbon-free future. Use the powerful Airtorch® for continuous VOC removal, conversions, ore drying, rapid heat treatment, and surface treatments like finishing to hardfacing are the future. The C, CO, and CO2 gas reactions, including the Boudouard, Fischer-Tropsch, DMR, and variations, can be manipulated with hot process gases – including Air, N2, O2, CO2, Ar, and more. Examine other reactions below and do not hesitate to contact MHI for guidance:
2CH4 + H2O +CO2 = 3CO + 5H2 Well feasible above ~(760-860C) with easy methods for enabling all forms of downstream reduction. MHI reaction.
E.g., products that are reducing gases that can be used for various reducing reactions, including cleaning and shiny metal production, such as Fe2O3 + 3CO = 2Fe + 3CO2 (weak) or Fe2O3 + 3H2 = 2Fe + 3H2O above 520C. Note that CO2 + CH4 =2C + 2H2O is always feasible at >100C but is extremely weak. Fe2O3 + 2CO + H2 = 2Fe + 2CO2 + H2O is always feasible but best above 1100C. The reaction Fe2O3 + 3H2(g) = 3H2O(g) + 2Fe is feasible above 600°C but requires a higher temperature than that for proper kinetics. Fe3O4 + 4H2(g) = 4H2O(g) + 3Fe is feasible above 1100°C. FeO + H2(g) = H2O(g) + Fe is a difficult reaction. Some green steel processing could use a mixture of Fe2O3 and nano-FeO, which, when reduced, can yield a metal-ceramic composite of Fe/FeO.
Or say:
CO2 + CH4 = 2CO + 2H2. Feasible above ~660C or via the steam reforming and water shift shown here. Unique combinations may be used for advantageous reaction engineering.
2H2 + CO2 = C + 2H2O is feasible below 600C
H2 + CO2 = CO + H2O is feasible above 900C
MHI offers 1-20 Mega-Watts, easy on-off, reactors, with Airtorch® models. Contact MHI.
Is sustainable CO2 reuse via the Dry Methane Reforming (DMR) process cost-competitive?
Pyrolysis of Methane at high temperatures can produce hydrogen and other carbon-hydrogen compounds or various morphologies of carbon like C12, carbon -fibers, and other useful high-energy products and materials. Several reactions are possible that can be manipulated with pressure and catalysts:
CH4=2H2+ C (At 1000C K= 1 x 10^2, Delta(H)= positive)
2CH4= 3H2+C2H2 (At 1000C K= 1.2 x 10^-3, Delta(H)= positive)
2CH4= H2 + C2H6 (At 1000C K= 4.2 x 10^-3, Delta (H)= positive)

Syngas Production. For laboratory KW and Commercial, MW MHI is the source.
Heat Methane and CO2
Fuel cells, High-velocity drying, and Surface-heating, including simulation. The diagram below relates to iron ore reduction without catalysts, with some carbon monoxide or hydrogen reduction. Contact MHI for nozzles supplied.
Catalytic Bed Heating/ See also Fluidized Bed. See also Quasi-R(R). Airtorch® units can have a high-temperature input and may be supplied with high-pressure shells/schedules. Various types of supplemental heating can be included. MHI specializes in custom units. Please be aware that customization adds a considerable degree of cost. Use also for aseptic and antimicrobial processing.
Chronology of Steel Developments
Packaging, Sealing, Chemical Reactions, Cracking and Hot CO2 or CO reactions
Large Die Heating/ Rapid Dry of Ores and Lithium Salts/Furnace Preheating
Drying is best done with hot air or hot steam. This prevents the toxic use of drying salts (chemicals) and reduces sulfuric and hydrochloric acid emissions. In one application the return on expenditure was very high – the cost of the capital equipment was recovered in two years. When using salts or desiccants they have to be dried for reuse. Using salts could create a very high energy/material recovery cost.
The Airtorch® allows large die heat-up, including reclaiming dies and aluminum. Attempt the removal of inorganic and organic salts, fuel cells, general heat treatment for bending and de-flashing/deburring, drum heating, plastic rolls, welding organics like plastic soldering disinfection, drying, and rapid paper and pulp dry: combustion/flow simulation, curing, drying, or bonding of paper boards.
With a 4 kW machine, plan to dry 2-4 Kg/hr. of desiccant.
Click to see the Die Heating Applications Presentation |
Don’t hesitate to contact MHI for ROI calculations for typical Die Heating.
Decarbonize the melting of tin, zinc, and aluminum with the Airtorch products. In a tin melting plant, it became costly to get new gas lines. The plant is considering melting with low-pressure drop Airtorches. It hopes to recover its expenditure in two years because of the enormous energy benefits of melting with an electric airtorch. MHI can assist with energy calculations.

Airtorch Vert High-Pressure High Temperature
Are you looking for a very low-pressure drop high, efficiency compact Duct-Heater?
Convert to an electric oven with the highly compact SH duct heater module.
Extremely Compact High Power Duct Heater Airtorch®.
Energy efficiency is higher. Because of the controlled temperatures of an electric heater, they tend to be considerably more efficient than gas heaters.
1- 15 Kw 36 KW, 72kW , 144kW, 402 Kw, 900KW, 3 MW, 4 MW (PV)
Other MHI products like OAB® and Cascade e-ion also may be used for such applications.
Combustion and Scorching/Burn off/Curing
Arrhenius equation and influence of Temperature. Airtorch® can be used for curing, surface burning, sealing, and simulation operations. The possibilities are endless, as Air, Nitrogen, Helium, and Argon can be used. During combustion, the time for 98% combustion can change by several orders of magnitude for a 100°K rise in air temperature.
Scorching/burn-off/curing
Conversion
for N2 |
Weight, Nitrogen | Volume, Nitrogen | ||
Pounds (lb) |
kilograms (kg) |
Cubic feet (SCF) |
Cubic meters (Nm3) |
|
1 pound | 1.0 | 0.454 | 13.80 | 0.363 |
————— | ————– | —————- | ————- | ————— |
1 kilogram | 2.205 | 1.0 | 30.42 | 0.7996 |
1 SCF gas | 0.07245 | 0.03286 | 1.0 | 0.02628 |
1 Nm3 gas | 2.757 | 1.2506 | 38.04 | 1.0 |
SCF (Standard cubic foot) gas was measured at 1 atmosphere and 70°F. Nm3 (Normal cubic meter) gas was measured at 1 atmosphere and 0°C. |
44.01 kg is the mass of one kilo-mole of CO2
14.0067 kg is the mass of one kilo-mole of N2
The average molar mass of dry air is 28.97 kg/kilo-mole.
Easy Design and Selection
Choose KW, MW, and even MW/m2 flux
If the flow is higher than 40 SCFM, please choose from MVTA models
If the temperature required is above 1150°C, please choose PDF models
If the flow rate needed is of the order of 2-40 SCFM, please select from MTA, VTA, or LTA models or MVTA925 for flanged units
- DPF – Up to 1150°C-1250°C/~2200°F. DPF models can take fan or blower input and a compressed air/gas input.
- Large Flow MVTA. For 1000-1100°C. These are sealed process gas heaters (THN or DNA class) with a blower or inline capability—high KW – High Flow.
- Large Flow GTA – For high-pressure vessel Airtorch® use. Custom engineering. Please contact us directly for assistance.

Continuous ovens with Airtorch® heating
CONVERSION TABLE OF MBtu/h to KW
MBtu/hour [MBtu/h] Kilowatt [kW]
0.01 MBtu/h 2.93 kW
0.1 MBtu/h 29.30 kW
1 MBtu/h 293.07 kW
2 MBtu/h 586.14 kW
3 MBtu/h 879.21 kW
5 MBtu/h 1465.35 kW
5.8 MBtu/h 1700 kW
8.54 MBtu/h 2500 KW
10 MBtu/h 2930.71 kW
Comfort Air Heating
The Airtorch® allows significant room heating and humidity provided by the Steam Generators.

Comfort Airtorch®
The application of the Airtorch™ in Fluidized Beds! Please call MHI for details.
Airtorch® Applications are in Curing and Baking, Batteries, both electrical and thermal, Batch Heating, Electrochemical and Chemical Processing, Drying, and Cooking, Difficult Core Drying Exhaust Gas Heating, Curing, Dehumidification, Dehydrating, Film Drying, Finishing Systems, Food Processing, Fruit Ripening, Heat Battery, Heat Recovery Supplement, Heat Treating, Crucible or Hopper Heating, Dyes, and Ink Drying, Testing, Make-up Air Heating, Metal Finishing, Reheating, Roasting (peanuts, groundnuts, pecans, nuts, coffee, corn, soya, Semi-Conductor Manufacturing, Disinfection, Sterilizing, Standby Heating, Textile Drying, Varnish Drying, Rod and Wire Manufacturing, Spacecraft Aircraft And Aircraft Stands and Manufacturing, Air Curtains, Air Drying, Annealing, Enhanced Booster Heating, Motor Winding Burn off, Paint Baking/Drying, Pharmaceutical Manufacturing, Plastic Curing, Preheating, Ore processing.
Aluminum Brazing | Scorching/Burn off/Curing |
The Airtorch® has opened up new possibilities in the brazing and joining technologies. Whereas brazing furnaces were cumbersome and expensive in the past, Airtorch® allows for inexpensive processes.![]() |
The Airtorch® can be used for curing, surface burning, and sealing operations. The possibilities are endless, as Air, Nitrogen, Helium, and Argon can be used.![]() |
Large Die Heating | Direct Ceramic Drying |
The Airtorch® allows large die heat-up; reclaim dies and aluminum.
|
The Airtorch® can achieve very high temperatures without contamination. Therefore direct drying is a natural application. Free and bonded water can be easily removed. MHI also manufactures several Airtorch® Continuous ovens.![]() |
Binder Burn Off | Heating for Tensile Testing |
Easy, uniform, safe, and collectible binder burn-off. Substantially improve quality and productivity for ceramics, nitrides, powder metals, etc.![]() |
When high temperatures are needed in spaces where resistance heating elements cannot be used, the Airtorch® provides the solution.
|
Packaging or Sealing | Die Heating |
Designed for long life and high temperatures, the non-contaminating Airtorch® is an ideal solution for inline packaging or sealing processes.![]() |
Use the Airtorch® adie preheating devices in the metal forging and rolling industries.![]() |
Soldering, Melting, and Dental | |
Use the Airtorch® for softeninsolder, and melt of precious metals and glass. Use for rapid glazing, burnout, and quick melts. This feature applies to the dental, jewelry, and glass industries. |
Nozzle Heating | Gas Preheating |
The glass industry uses the high-temperature Airtorch® to enable uniform flow and reflow of molten glass. The air temperature can be as high as 1200°C with a meager flow rate.![]() |
Airtorch® can rapidly heat various atmospheres: Air, Nitrogen, Argon, Helium, etc. Call MHI for more information.
|
Microprocessor Heating | Light Fiber Processing |
Unique heating from 500°C to 1000°C. The Airtorch® produces laser-like hints to small areas of 5mm in diameter with stable and accurate control.
|
Uniformly free carbon from woven fibers with true convection. The Airtorch® creates hot turbulent air that passes through the substrate for uniform and accurate heating. As carbon is released, the natural flow of clean hot air flushes the airborne carbon away from the part and up the chimney.![]() |
Effective Heat Treating | Preheating for Welding |
Uniform rapid heating. The Airtorch® offers uniform high temperature and heat transit heat parts rapidlyarts. Very effective for metals when increasing hardness.![]() |
With high accuracy and temperatures, the Airtorch® reduces the guesswork of preheating for welding applications. Offers accurate temperature read-out.
|
Spot Decarborinzing (reducing hardness) | Ultimate UtiliOver-carbonizing |
ing causes hardness above most machining capabilities. The Airtorch® offers locatable, accurate, rapid heat-up cool-down to diffuse carbon allowing the metal’s tempering efficiently.![]() |
Develop your application. The Airtorch® is capable of many applications where accuracy, uniformity, power, and high temperatures are required. Also benefit from whisper-like operations, energy efficiency, and ease of use.![]() ![]() |