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A B S T R A C T   

The objective of this study was to investigate the inactivation kinetics of Enterococcus faecium in peanut butter 
under different water activities (aw) and superheated steam temperatures. Peanut butters were prepared at 4 
different initial water activities (0.19, 0.40, 0.60, and 0.80) and E. faecium was inoculated into the peanut butter 
(7.4–8.7 log CFU/g). The inoculated peanut butter samples were exposed at 4 different superheated steam 
temperatures (125 ◦C, 175 ◦C, 225 ◦C, and 250 ◦C). Survivor data were modelled using Weibull and log-linear 
models to describe the inactivation kinetics of E. faecium. The decimal reduction times (D-value), temperature 
sensitivity (zT) and aw sensitivity (zaw) of the D-value were determined from a log-linear model, and inactivation 
parameters from the Weibull model were also evaluated. An increase in aw of peanut butter and superheated 
steam temperature decreased the D-value of E. faecium. The zaw-value and zT-value were determined to be 0.60 ±
0.09 and 194.66 ± 40.69 ◦C, respectively (R2 > 0.89). The inactivation kinetics of E. faecium on surfaces 
contaminated with peanut butter can provide comprehensive information to superheated steam sanitation 
treatment which may be applied to environmental surfaces for effective microbial inactivation without the 
introduction of water.   

1. Introduction 

Sanitation of food processing environmental surfaces is essential in 
preventing environmental cross-contamination and ensuring the mi-
crobial safety of food products (Park & Yoon, 2019). However, sanita-
tion in dry food processing environments represents a unique challenge 
since conventional wet sanitation approaches utilize water which is 
typically excluded from otherwise dry processing facilities. Moisture 
introduced from sanitation regimens can facilitate microbial growth and 
the formation of harborage sites in niches and microenvironments in dry 
facilities. Relevant industries include grain products, nut and nut but-
ters, pet food, dairy powders and infant formulas, and spices (Marriott 
et al., 2018). Therefore, effective dry sanitation approaches are essential 
for safe food production in dry processing environments (Burnett & 
Hagberg, 2014). 

Various dry sanitation methods have been used to reduce microbial 
contamination on food plant surfaces, such as alcohol-based sanitizers 

(Du et al., 2010), dry heat (McKelvey & Bodnaruk, 2013), hot oil (Grasso 
et al., 2015), gaseous ozone (Kim et al., 2003), gaseous chlorine dioxide 
(Nam et al., 2014; Trinetta et al., 2012), and UV (Kim et al., 2018). 
However, compared to wet sanitation methods, the disinfection effi-
ciencies of these dry sanitation methods are limited (Burnett & Hagberg, 
2014; Kim et al., 2020). Therefore, it is necessary to develop an effective 
sanitization technology to inactivate the microbial pathogens in dry 
processing environments. 

It is well established that moist heat (saturated steam) is more effi-
cient in microbial inactivation than dry heat (hot air) because saturated 
steam has higher thermal conductivity and heat capacity than hot air 
(Alder & Simpson, 1982). Recently, superheated steam has been eval-
uated as an emerging dry thermal technology for microbial inactivation. 
Superheated steam is a form of steam which has been heated to increase 
its temperature over the saturation point at a given pressure (Van 
Deventer & Heijmans, 2001). In contrast to saturated steam, a decrease 
in temperature will not lead to condensation unless the temperature 
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decreases to below the saturation point. Due to the higher temperature 
than saturated steam, superheated steam can effectively inactivate 
pathogens in dry environmental conditions without introducing mois-
ture. Hence, superheated steam has been used to decontaminate various 
food processing surfaces (Ban et al., 2014; Hu et al., 2016; Kim et al., 
2019; Kohli, 2019; Kondjoyan & Portanguen, 2008; Kwon et al., 2019). 

Food plant sanitation is a two-step process that involves cleaning 
(removal of organic soil, such as peanut butter) and sanitization (inac-
tivation of remaining microbial targets). In commercial food plant en-
vironments, it is not uncommon that cleaning is incompletely 
accomplished and the mitigating effect of the residual food soil on 
sanitization efficacy is an important problem. Moreover, in many food 
facilities that handle low moisture foods, legacy equipment is not hy-
gienically designed, often possessing many crevices that are difficult to 
clean with most physical strategies. One of the advantages of super-
heated steam is its ability to penetrate such niches where residual food 
soil is harbored. 

Water activity (aw) has been shown to greatly affect the thermal 
resistance of pathogens (Syamaladevi et al., 2016). Thus, aw of food soils 
on treated surfaces can affect the decontamination efficiency of super-
heated steam. In addition, superheated steam temperature (ranging 
from 125 to 300 ◦C) significantly affects its decontamination efficiency 
(Ban et al., 2014; Hu et al., 2016; Kwon et al., 2019). However, the 
interacting effects of aw and superheated steam temperature on inacti-
vation kinetics are not well understood and are underreported in the 
literature. 

Peanut butter is a common low-moisture food that has been associ-
ated with previous outbreaks of salmonellosis. Complete removal of 
peanut butter residues from environmental surfaces is difficult. Conse-
quently, peanut butter was used in this study as a matrix that potentially 
mitigates the effect of superheated steam. The non-pathogenic, vegeta-
tive bacterium, Enterococcus faecium, has been adopted as a surrogate for 
Salmonella in low-moisture foods to investigate inactivation efficiency of 
thermal processes (Bianchini et al., 2014; Ceylan & Bautista, 2015; 
Jeong et al., 2011; Yang, Xie, et al., 2020). To our knowledge, there is 
limited kinetic data on superheated steam inactivation of E. faecium. 
Therefore, the objective of this study was to investigate the effect of 
peanut butter aw and different superheated temperatures on the inacti-
vation kinetics of E. faecium during superheated steam sanitation 
treatment. 

2. Materials and methods 

2.1. Bacterial cultures and preparation of inoculum 

Enterococcus faecium NRRL B-2354, provided from the bacterial 
culture collection of Michelle Danyluk at the University of Florida (Lake 
Alfred, FL), was used. The preparation procedure developed by Jeong 
et al. (2011) was followed with slight modifications. E. faecium was 
grown in tryptic soy broth supplemented with 0.6% (w/v) yeast extract 
(TSBYE; Thermo Fisher Scientific, Waltham, MA) for 24 h at 37 ◦C, and 
then 1 ml of the culture was spread plated on TSAYE agar plates (150 by 
15 mm) to obtain uniform lawns. After 24 h of incubation at 37 ◦C, the 
bacterial lawns from 6 plates were harvested by flooding with 60 ml of 
0.1% sterile peptone water (Thermo Fisher Scientific, Waltham, MA). 
The bacterial broth was centrifuged at 8,000 g for 10 min at 4 ◦C and the 
supernatant was discarded. Then, the bacterial pellet was re-suspended 
in 6 ml of 0.1% peptone water before use. 

2.2. Sample preparation and inoculation 

Experiments utilized peanut butter sample as the model food residue 
to evaluate superheated steam efficacy. Two days before experiment, 
49.5 g of peanut butter (100% peanuts, Crazy Richard’s, Plain City, OH) 
samples were inoculated with 500 μl of the E. faecium culture and pre-
pared at 4 different aw levels (0.19, 0.40, 0.60, and 0.80) at 25 ◦C as 

shown in Table 1. To adjust the aw levels, a pre-determined amount of 
deionized water was mixed with peanut butter. Following homogeni-
zation, a water activity meter (Aqua Lab 4 TE, METER®, Pullman, WA) 
was used to measure the aw of the inoculated peanut butter in triplicate 
at room temperature (25 ◦C). The prepared peanut butter samples were 
kept at 25 ◦C for 48 h to condition the E. faecium in the low aw envi-
ronment. The initial populations of E. faecium in the inoculated samples 
after conditioning ranged from 7.4 to 8.7 log CFU/g. 

0.6 mm thickness thin-film layer of peanut butter was chosen based 
on preliminary experimentation with the aim of minimizing variations 
in thermal history and moisture distribution within the test matrix 
during the superheated steam experiments. A custom 3D printed mold 
was used for casting the peanut butter layer (31.5 mm × 20.0 mm ×
0.60 mm, length × width × thickness) (Fig. 1). By sliding a blade over a 
flat surface, the excess coating of peanut butter was scraped away and 
the resulting thin-film layer of peanut butter was a uniform. This layer 
was applied to one side of aluminum foil. The sample-coated aluminum 
foil was attached to a custom coupon holder. 

2.3. Superheated steam system 

2.3.1. Temperature measurement in the treatment chamber 
The schematic diagram of the superheated steam equipment with a 

superheated steam generator (HGA-S, MHI Inc., Cincinnati, OH) is 
shown in Fig. 2. To investigate the effect of water supply flow rate on the 
temperature distribution within the treatment chamber, the tempera-
tures at different distances (2 cm, 4 cm, 6 cm, 8 cm, 10 cm, and 12 cm) 
from the steam source were measured at different flow rates of water 
which ranged from 17.0 ml/min to 26.2 ml/min. To monitor and record 
the temperature within the superheated chamber, tyke-K thermocouples 
and a portable data acquisition module (Advantech, Taibei, Taiwan) 
were used. During superheated steam treatment, the flow rate of water 
was adjusted to maintain the superheated steam temperature at each 
target temperature (125 ◦C, 175 ◦C, 225 ◦C, and 250 ◦C). The uniformity 
of superheated steam temperature was assessed at each target temper-
ature during superheated steam treatment. 

2.3.2. Superheated steam treatment 
Prior to experiments, the superheated steam chamber was pre-heated 

to target temperature (1 h for reaching steady state conditions). The 
peanut butter (initially at 25 ◦C) was mounted on a custom coupon 
holder and introduced into the preheated treatment chamber to a pre- 
determined location, 4 cm distance from the steam source (Fig. 2). A 
k-type thermocouple monitored temperature of the sample at its geo-
metric center during superheated steam treatment. The samples were 
treated at various process temperature (125 ◦C, 175 ◦C, 225 ◦C, and 
250 ◦C) for a given time interval, and then quickly removed and 
immediately transferred to 10 ml of 0.1% peptone water to stop the 
thermal process. 

2.4. Enumeration of Enterococcus faecium 

Samples suspended in 10 ml of peptone water were homogenized for 
2 min by using a vortex mixer (Mini Vortexer, Thermo Fisher Scientific, 
Waltham, MA) until no clumps were observed. From the homogenized 
samples, 100 μl was plated onto TSAYE plates either directly or after 
serial dilutions. When the samples showed low microbial counts, 1 ml of 

Table 1 
Water activity of different peanut butter samples at 25 ◦C.  

Culture (ml) Water (g) Peanut butter (g) aw 

0.5 4.1 45.4 0.80 
0.5 2.1 47.4 0.60 
0.5 1.2 48.3 0.40 
0.5 0.0 49.5 0.19  
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the lowest dilution was plated onto 3 TSAYE plates and the resulting 
colonies were summed. The plates were incubated at 37 ◦C for 48 h for 
the enumeration of E. faecium. Since 0.48 g (±0.02) of the coated sam-
ples were homogenized in 10 ml of peptone water before plating on 
TSAYE plates, the minimum detection limit in this study was 20 CFU/g. 

2.5. Modeling inactivation kinetics 

To describe the inactivation kinetics of E. faecium at different su-
perheated steam temperatures and aw levels, the log-linear model and 
the Weibull model were used to fit the experimental data. Under 
isothermal conditions, it has generally been assumed that thermal 
inactivation of microorganisms is exponential with time i.e., log-linear 
kinetics (McKellar & Lu, 2003). 

2.5.1. Log-linear model 
The log-linear model can be described by the following equation: 

log
N
N0

= −
t
D

(1)  

where N is the number of survivors after a treatment time t (CFU/g), N0 
is initial population (CFU/g), t is the treatment time (sec), and D is the 
decimal reduction time (sec). To investigate the effect of temperature 
and aw on the thermal inactivation kinetics of E. faecium, temperature 
sensitivity (zT) and aw sensitivity (zaw) of the D-value can be represented 
in terms of z-value (McKellar & Lu, 2003). The z-value is defined as the 
increase in temperature or aw causing a 90% reduction in D-value. The 
z-value can be expressed as follows: 

z=
C2 − C1

logD1 − logD2
(2)  

where z is temperature (zT) or aw (zaw) sensitivity of the bacterial culture, 
and C is temperature (◦C) or aw. 

2.5.2. Non-linear model 
The Weibull model has been widely used in describing the non-linear 

inactivation of various microorganisms in different experimental con-
ditions (McKellar & Lu, 2003). The Weibull model is expressed by Eq. 
(3): 

log
N
N0

= − btn (3)  

where b and n are the scale and shape parameters, respectively. 
In this study, MATLAB (Mathworks Inc., Natick, MA) was used to fit 

the inactivation models. The suitability of the two inactivation models 
described above was estimated by comparison to the experimental data. 
Generally, the goodness of fit was estimated by the root mean square 
error (RMSE) (Li et al., 2018). RMSE was calculated using the following 
equations: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − p
⋅
∑n

i=1

[
log

(
N
/

Np
)]2

√

(4)  

where Np is the predicted microbial count (CFU/g), n is the number of 
data points, and p is the number of parameters in the model. 

2.6. Change in moisture content after superheated steam treatment 

The moisture contents of peanut butter samples before treatment and 
after superheated steam treatment achieving 5-log reduction were 
compared at each aw. The moisture content was measured according to 
the AOAC method (1990). 

2.7. Statistical analysis 

All experiments were carried out in triplicate using independent 
biological replicates and the standard deviations and mean values were 
determined. One-way ANOVA and Tukey’s multiple comparison tests at 
the significance level of 0.05 were performed by using SPSS software 
(SPSS Inc, Chicago, IL). 

3. Results and discussion 

3.1. Temperature and moisture distribution within the treatment chamber 
and test matrix 

The temperature of superheated steam within the treatment chamber 
varied as a function of both the flow rate of water used for generating the 
steam as well as the distance between the sample coupon and the su-
perheated steam nozzle (Table 2). During operation, the superheated 
steam generator consumed 1 kW of electrical power to generate super-
heated steam from water. Temperature in the treatment chamber 
significantly decreased as the flow rate of water increased since the 
superheated steam generator needs to heat greater amounts of water at 
higher flow rates. The superheated steam temperature also decreased as 
the distance from the steam nozzle increased because of the heat lost to 
the environment. Thus, superheated steam temperature was signifi-
cantly affected by both the flow rate of water and the distance from the 
steam source (p < 0.05). Based on these results, the testing coupon was 
mounted at 4 cm from the steam nozzle source for the microbial inac-
tivation studies. The flow rate of water was adjusted to control the su-
perheated steam temperature at each target temperature. Additionally, 
the uniformity of superheated steam temperature within the test surface 
was estimated. 

The test sample reached desired target temperature in about 3–4 s 
after introduction into the superheated steam chamber. Relatively 

Fig. 1. The custom mold for the thin-film layer of peanut butter.  

Fig. 2. The schematic diagram of the superheated steam equipment.  
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smaller volume of peanut butter sample (0.38 cm3) within larger 
treatment chamber (464.94 cm3) helped to minimize the come-up time. 
At each target temperature (125 ◦C, 175 ◦C, 225 ◦C, and 250 ◦C), the 
temperatures at the geometric center of the test surface were 125.14 ◦C 
(±0.12), 175.27 ◦C (±0.15), 224.97 ◦C (±0.31), and 250.33 ◦C (±0.54), 
respectively. One-dimensional transient heat conduction analytical so-
lution verified that temperature gradient within 0.6 mm sample was 
negligible and reached steady state within 4 s. 

During the treatment, water vapor exchange can occur between su-
perheated steam and the test sample. The relative pressure of super-
heated steam vapor may explain this phenomena. The ratio of partial 
vapor pressure of superheated steam (pv) to saturation vapor pressure of 
water (psat) at the same temperature is defined as the relative pressure 
(Pronyk et al., 2010). In this study, the partial vapor pressure of the 
superheated steam system is equal to the operating pressure (i.e., 

atmospheric pressure) because the superheated chamber is primarily 
composed of water vapor. Thus, the relative pressure superheated steam 
vapor at 125 ◦C, 175 ◦C, 225 ◦C, 250 ◦C were estimated as 43.6%, 11.3%, 
4.0% and 2.6%, respectively. Thus, when the target process temperature 
was closer to saturated steam conditions (i.e., T ≤ 125 ◦C), when the 
sample at ambient temperature was introduced into the treatment 
chamber, condensation of vapor on the peanut butter surface was 
observed (ie. Sample gained moisture from the environment). When the 
temperature increased beyond 150 ◦C, at thee beginning stages of 
treatment, the superheated steam can cool (lose internal energy), 
resulting in a lowering of its temperature without changing state from a 
gas. Subsequently the product gains heat from the superheated steam, 
give up moisture to the environment and became desiccated. 

Researchers have reported increases in water activity with increasing 
temperature during thermal processing of low moisture foods (such as 

Table 2 
Temperature distributions in the superheated steam treatment chamber at different flow rates of water.  

Flow rate of water (ml/min) Distance from steam nozzle 

2 cm 4 cm 6 cm 8 cm 10 cm 12 cm 

17.0 296.43 ◦C ± 2.09 266.00 ◦C ± 0.55 260.22 ◦C ± 0.53 248.55 ◦C ± 0.52 246.43 ◦C ± 0.50 236.56 ◦C ± 0.52 
19.7 251.13 ◦C ± 1.14 228.41 ◦C ± 0.33 221.27 ◦C ± 0.77 221.75 ◦C ± 0.29 218.55 ◦C ± 0.52 216.21 ◦C ± 0.35 
22.2 200.91 ◦C ± 0.75 189.90 ◦C ± 0.28 184.55 ◦C ± 0.20 180.34 ◦C ± 0.25 178.55 ◦C ± 0.34 169.27 ◦C ± 0.38 
24.3 164.70 ◦C ± 0.51 156.64 ◦C ± 0.16 156.25 ◦C ± 0.15 155.89 ◦C ± 0.19 154.85 ◦C ± 0.20 153.63 ◦C ± 0.24 
25.5 135.14 ◦C ± 0.72 129.15 ◦C ± 0.14 126.85 ◦C ± 0.13 126.79 ◦C ± 0.14 126.05 ◦C ± 0.12 124.14 ◦C ± 0.13 
26.2 121.24 ◦C ± 0.11 117.55 ◦C ± 0.11 116.55 ◦C ± 0.14 115.02 ◦C ± 0.14 113.55 ◦C ± 0.12 112.55 ◦C ± 0.13  

Fig. 3. Inactivation kinetics of Enterococcus faecium in peanut butter at (a) 0.19 aw, (b) 0.40 aw, (c) 0.60 aw, and (d) 0.80 aw during superheated steam treatment at 
different temperatures. Dotted line indicates the detection limit (1.3 log CFU/g). 
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cheese powder, corn starch, non-fat milk powder, soy protein powder, 
and wheat flour) (Jin et al., 2019, 2020; Tadapaneni et al., 2017). On the 
other hand, the water activity of peanut oil sharply decreased with 
increasing temperature during thermal processing (Yang, Guan, et al., 
2020). Such studies employed closed sample system where changes in 
water activity can be monitored. On the contrary, during superheating 
of peanut butter sample, dynamic exchang of moisture occurred, 
particularly during the earlier stages of heating. The influence of this 
dynamic moisture transfer between the sample and environment (and 
changes in product water activity) during the treatment was not deter-
mined. Such effort would merit future investigation. 

3.2. Effect of peanut butter water activity and superheated steam 
temperature on the inactivation of Enterococcus faecium 

Fig. 3 shows the inactivation curves for E. faecium during super-
heated steam treatment in peanut butter at different temperatures 
(125 ◦C, 175 ◦C, 225 ◦C, and 250 ◦C). Regardless of the aw of peanut 
butter, the superheated steam temperature greatly affected the inacti-
vation of E. faecium. The treatment times required to achieve 5-log 
reduction at 125 ◦C were more than 3 times longer than those at 
250 ◦C for different aw levels investigated. While a >5-log reduction of 
E. faecium was achieved at 250 ◦C across different aw levels of peanut 
butter, only <2-log reduction were achieved at 125 ◦C. Increasing su-
perheated steam temperature accelerated the inactivation of E. faecium 
and reduced the treatment time, which is consistent with other super-
heated steam studies reported by Ban et al. (2014), Ban et al. (2018), and 
Cenkowski et al. (2007). In previous reports, increasing superheated 
steam temperature accelerated the inactivation of Geobacillus stear-
othermophilus spore in sand (Cenkowski et al., 2007), biofilms on poly-
vinyl chloride and stainless steel (Ban et al., 2014), and Salmonella 
enterica serovars Typhimurium and Enteritidis on spices (Ban et al., 
2018). The results of previous and current studies suggest that the effi-
cacy of superheated steam inactivation of bacteria was highly dependent 
on superheated steam temperature. 

The moisture content of peanut butter samples were measured to 
investigate the changes after superheated steam treatment. The moisture 
contents of peanut butter samples before treatment and immediately 
after treatment at 125 ◦C and 250 ◦C are summarized in Table 3. There 
was no significant change in the moisture content after superheated 
steam treatment, except for a decrease of the peanut butter moisture 
content after superheated steam treatment at 250 ◦C with an initial aw of 
0.19 (p < 0.05). The relatively short treatment time of superheated 
steam at 250 ◦C may be why it does not introduce appreciable moisture 
migration inside peanut butter samples that contain high oil content 
(>40%) and low moisture content (<14%). It has been well established 
that the hydrophobic character of oil interferes the moisture diffusion 
inside foods (Alzamora & Chirife, 1980; Jason, 1965). 

Moisture diffusivity (1 × 10− 8 m2/s to 1 × 10− 11 m2/s) in foods is 
generally lower than thermal diffusivity of foods (9 × 10− 8 m2/s to 1.5 
× 10− 7 m2/s) (Panagiotou et al., 2004; Shitzer et al., 2006). Thus, the 
heat transfer in foods is generally faster than the moisture transfer in 
foods, especially in oil (Panagiotou et al., 2004; Yang, Xie, et al., 2020). 

Our result also showed a similar trend. The time to reach temperature 
equilibration was within seconds while the noticeable drying effect was 
observed when the treatment time was longer than 1 min at 250 ◦C and 
0.19 aw level (Table 3). However, there could be changes in the moisture 
content at the surface of peanut butter samples. At 125 ◦C, condensation 
transiently occured at the beginning of treatment (during come-up time) 
when the surface temperature was lower than 100 ◦C. Subsequently as 
the surface temperature increases, moisture evaporation begins to occur. 
Hence, minimal changes in the moisture content of peanut butter may be 
expected during superheated steam treatment. 

E. faecium inactivation was greatly affected by initial aw of peanut 
butter. When subjected to superheated steam treatment for 30 s at 
125 ◦C, the log reduction of E. faecium was 4.45 log CFU/g at 0.80 aw, 
whereas it achieved a reduction of 0.51 log CFU/g at 0.19 aw (Fig. 3a and 
3d). Similarly, at 250 ◦C, the E. faecium survivor counts were under the 
detection limit (i.e., the log reduction > 7.28 log CFU/g) at 0.80 aw after 
15 s treatment, while only 1.21 log CFU/g reduction was achieved when 
inoculum was subjected to superheated steam treatment for 15 s at 0.19 
aw (Fig. 3a and 3d). The exposure time required to achieve 5-log 
reduction at 0.19 aw was more than 9 times longer than that required 
at 0.80 aw, regardless of treatment temperature. It has been well known 
that reducing aw can protect microorganisms from environmental stress, 
such as heat (Gould, 1985; Syamaladevi et al., 2016; Xu et al., 2019; 
Yang, Xie, et al., 2020), pulsed electric fields (Aronsson & Rönner, 2001) 
electron beam (Black & Jaczynski, 2006), radio-frequency treatment (Xu 
et al., 2019), and high pressure processing (Daryaei & Balasu-
bramaniam, 2012). The higher thermal resistance of E. faecium at lower 
aw environments can be explained by water loss from bacterial cells, 
which leads to more stable protein structures of bacterial cells, which 
could impedes thermal denaturation of heat-sensitve proteins (Liu et al., 
2018). 

3.3. Inactivation kinetics of Enterococcus faecium 

The log-linear regression model and the Weibull model were used to 
fit the inactivation data of E. faecium at different temperatures and aw 
levels during superheated steam treatment (Fig. 3). The estimated model 
parameters and RMSE values of the log-linear regression model and 
Weibull model are summarized in Tables 4 and 5, respectively. The D- 
values of E. faecium in peanut butter were affected by both superheated 
steam temperature and aw of peanut butter (Table 4). By increasing 
temperature (from 125 ◦C to 250 ◦C) and increasing aw of peanut butter 
(from 0.19 to 0.80), the D-value of 129.70 s at 125 ◦C and 0.80 aw greatly 
reduced to 18.49 s and 6.33 s, respectively. Similar changes in the D- 
value with superheated steam temperature were reported for the inac-
tivation of Geobacillus stearothermophilus spores in sand (Cenkowski 
et al., 2007), Bacillus cereus spores on garlic (Jo et al., 2019), and Sal-
monella enterica serovars Typhimurium and Enteritidis on black pep-
percorns, pecans, and almonds (Ban et al., 2018). However, the effect of 
aw on the heat resistance of bacteria during superheated steam treatment 
has not been reported yet. Similar trends in the effect of aw on the 

Table 3 
Changes in moisture content of peanut butter before and immediately after su-
perheated steam treatment.  

aw at 25
o

C Moisture content (% d.b.) 

Initial 250 ◦C 125 ◦C 

0.19 1.70 ± 0.34a 0.76 ± 0.18b 2.22 ± 0.29a 

0.40 4.54 ± 0.29ab 4.18 ± 0.14b 4.94 ± 0.15a 

0.60 6.63 ± 0.15ab 6.17 ± 0.15b 6.95 ± 0.26a 

0.80 13.56 ± 0.20ab 13.00 ± 0.27b 14.07 ± 0.39a 

*Values in the same row having the different letters are statistically different (p 
< 0.05). 

Table 4 
Estimated parameters of the log-linear regression model for the inactivation 
kinetics of Enterococcus faecium in peanut butter at different water activities and 
different superheated steam treatment temperatures.  

aw at 25
o

C Temperature (◦C)    

125 175 225 250 

0.19 D-value (sec) 129.70 32.41 24.62 18.49 
RMSE 0.29 0.24 0.25 0.30 

0.40 D-value (sec) 28.03 7.83 5.40 4.61 
RMSE 0.19 0.22 0.24 0.46 

0.60 D-value (sec) 11.34 6.26 4.35 3.22 
RMSE 0.27 0.38 0.41 0.77 

0.80 D-value (sec) 6.33 3.38 1.93 – 
RMSE 0.75 0.98 1.48   
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thermal inactivation of bacteria were reported by several researchers 
(Jin et al., 2020; Liu et al., 2018; Xu et al., 2019). D-values of Salmonella 
Enteritidis PT30 in powdered products and Salmonella Agona in soy 
protein powder increased log-linearly with decreasing aw. Similarly, 
D80◦C-value of E. faecium in wheat flour increased from 3.81 min to 
281.78 min as aw decreased from 0.70 to 0.11 (Liu et al., 2018). 
Compared to the D80◦C-values of E. faecium in wheat flour, the D-values of 
E. faecium in this study were much smaller possibly due to the higher 
temperature of superheated steam (Table 4). 

3.3.1. Sensitivity of temperature and water activity on decimal reduction 
time 

To investigate the temperature sensitivity and aw sensitivity of the D- 
value, zT-value and the zaw-value were determined based on the D-values 
estimated at the different temperatures and aw levels (Fig. 4). The zaw- 
value and zT-value were estimated to be 0.60 ± 0.09 and 194.66 ±
40.69 ◦C, respectively (R2 > 0.89). The zT-value in this study was much 
greater than the zT-values of Salmonella in soy protein powder, which is 
ranged from 6.7 ◦C to 13.2 ◦C in the range of aw from 0.13 to 0.82 (Jin 
et al., 2020). Similarly, compared to the zaw-value of E. faecium in wheat 
flour at 80 ◦C (0.28) (Liu et al., 2018), the zaw-value of E. faecium in our 
study was greater. Thermal processing studies of Jin et al. (2020) and Li 
et al. (2018) employed sealed test cells which limited moisture ex-
change. On the other hand, in the current study there was an exchange of 
water vapor between the treatment environment and sample. This might 
have resulted in a shift in the aw of food samples and altered the inac-
tivation of bacteria under these conditions. Additionally, in the current 

study, due to shorter thermal come-up time of the product, no come-up 
time correction was considered in the estimation of relevant kinetic 
parameters. 

A very limited number of studies have reported the inactivation ki-
netic parameters for microorganisms under superheated steam treat-
ment. The inactivation curves of Salmonella (Ban et al., 2018) and 
G. stearothermophilus spores (Cenkowski et al., 2007) when subjected to 
superheated steam treatment showed linearity or a slight concave up-
ward shape, which is similar to the results obtained in our study. 

At high aw levels (0.6 and 0.8), the shape of the inactivation curves 
were concave upward (n < 1 in Weibull model). Previous researchers 
noted that aw of peanut products inside packaged container during 
thermal processing can change by increasing process temperatures. 
Yang, Guan, et al. (2020) reported that the aw of peanut oil changed as 
the temperature increased. As the temperature of peanut oil increased 
from 25 ◦C to 80 ◦C, the aw of peanut oil, originally conditioned at 0.94 
and 0.53, dropped to 0.36 and 0.21, respectively. This could possibly 
explain the concave upward curves observed in this study. 

Kinetic studies using a surrogate with similar or higher thermal 
resistance than the target pathogens is critical for validation of thermal 
sanitation processes in dry processing environments, since pathogens, 
such as Salmonella, cannot be tested in commercial process facilities 
(Niebuhr et al., 2008). Several studies have reported that E. faceium is 
more resistant to heat than Salmonella in low-moisture environments 
(Ceylan & Bautista, 2015; Enache et al., 2015; Liu et al., 2018; Rachon 
et al., 2016; Xu et al., 2019). However, this study was conducted under 
superheated steam temperatures (125 ◦C–250 ◦C) which are much 
higher than those temperatures used in earlier studies (<90 ◦C). 

3.3.2. Role of inversion temperature in microbial inactivation 
In the drying literature, inversion temperature is defined as the 

temperature at which the drying rates by hot air and superheated steam 
are equal. Above the inversion temperature, superheated steam drying is 
faster than hot-air drying. Below the inversion temperature, a thin water 
film can be formed by condensation of superheated steam, which can act 
as a barrier against heat transfer between superheated steam and treated 
surfaces. This phenomenon is commonly observed in superheated steam 
drying (Ramachandran et al., 2017; Sa-Adchom et al., 2011; Speckhahn 
et al., 2010). Results of this study suggest that this phenomena also 
contributed to the inactivation of microorganisms during superheated 
steam treatment. D-values between 125 ◦C and 175 ◦C decreased 
significantly compared to the changes in the D-values at the tempera-
tures higher than 175 ◦C (Table 4). When the zT-values were estimated in 
the temperature range from 125 ◦C to 250 ◦C, the zT-values of E. faecium 
at 0.19 and 0.40 aw levels were 156.25 ◦C and 163.93 ◦C, respectively 

Table 5 
Estimated parameters of the Weibull model for the inactivation kinetics of 
Enterococcus faecium in peanut butter at different water activities and at 
different superheated steam treatment temperatures.  

aw at 25
o

C Temperature (◦C)    

125 175 225 250 

0.19 B 0.002 0.01 0.05 0.08 
n 1.20 1.22 0.96 0.92 
RMSE 0.26 0.20 0.25 0.29 

0.40 B 0.03 0.09 0.14 0.37 
n 1.03 1.09 1.08 0.82 
RMSE 0.20 0.18 0.24 0.44 

0.60 B 0.12 0.32 0.40 0.83 
n 0.93 0.81 0.82 0.67 
RMSE 0.27 0.32 0.33 0.46 

0.80 B 0.71 1.28 2.86 – 
n 0.55 0.50 0.31  
RMSE 0.17 0.25 0.31   

Fig. 4. Effect of (a) temperature and (b) water activity on changes in log D-value of Enterococcus faecium in peanut butter during superheated steam treatment.  
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(R2 > 0.89). However, in the range of temperature from 175 ◦C to 
250 ◦C, the zT-values were increased to 319.49 ◦C and 323.62 ◦C at 0.19 
and 0.40 aw levels, respectively (R2 > 0.96), which indicates that the 
inactivation of E. faecium was highly sensitive to temperature change 
between 125 ◦C and 175 ◦C. This trend was not clearly observed at 0.60 
and 0.80 aw levels, which might be due to the relatively short treatment 
time (<70 s) at these aw levels (Fig. 3). More research is needed to gain 
better understanding on how inversion temperature of superheated 
steam influences the microbial inactivation. 

4. Conclusions 

This study investigated the inactivation kinetics of E. faecium in 
peanut butter under different aw and superheated steam temperatures 
during superheated steam sanitation treatment. Within the range of 
superheated steam temperature studied (125 ◦C–250 ◦C), increasing 
superheated steam temperature accelerated the inactivation of 
E. faecium. The results of this study showed that the aw of peanut butter 
significantly affected the thermal resistance of E. faecium during super-
heated steam treatment. Log-linear and Weibull models were used to 
model the inactivation kinetics of E. faecium in the range of aw 
(0.19–0.80) and superheated steam temperatures (125 ◦C–250 ◦C). The 
D-value of E. faecium increased as aw and superheated steam tempera-
ture decreased. The inactivation kinetics of E. faecium in peanut butter 
investigated in this study can provide comprehensive information to 
optimize superheated steam sanitation treatment which may be applied 
to environmental surfaces for effective microbial inactivation without 
the introduction of water. 
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