Steam Technology with Significant Energy and Water Savings.

Is it time to upgrade to a more reliable, easy-to-use, instant electric steam generation system with built-in modern energy-saving features?  Upgrade to a generator that offers independent control over the steam flow rate, steam temperature, and backpressure.  MHIs high temperature steam now allows everyone easy access to clean steam (steam that does not contain boiler residue, chemical, bacterial contaminants, or other undesirable materials).  This steam is available at a low cost.

Request OAB and VHGA Information

Today, the need for high-quality clean electric steam also encompasses the requirements for zero emissions, high energy efficiency, and minimum spatial footprint configuration.  The MightySteam® and OAB® steam generators produce non-condensing steam above the inversion temperature.  Because there are no liquid droplets the steam is of high quality.  This improves steam performance both for pharmaceutical use, clean comfort uses as well as utility purposes.

With this modern energy and time-saving steam generator, there is no need for superheaters or boilers to 800°C+ for high-quality clean steam.  No combustible fuel oils or gases,  No intense magnetic fields.  No heating of flow pipes by induction.  The temperature measured is that of the steam not of the pipe.  

Self-cleaning systems – save in downtime and labor hours.

Click here to send us your requirements for variable steam rate, variable temperature, and variable backpressure, instant on-off steam generator. Temperature choices from 150°C, 200°C, 300°C, 550°C or 750/800°C and 1300°C.

Industrial Models.

Request OAB and VHGA Information

R&D and Process Development Models.

Request OAB and VHGA Information

Steam Super-heaters for existing boilers

Request OAB and VHGA Information

Request OAB and VHGA Information

Specify the steam flow rate (kg/hr), the temperature of steam required, supply volts, and backpressure requirements.  It’s simple.

Modern Steam.  MightySteam® products reduce the price of high-quality steam.  Enjoy high conversion efficiencies, and save water.

Modern  PLC, SCR, HMI (touch screen) operation. Remote communications and control.

MightSteam® Products (Industrial and R&D Use)

MigthySteam® Controlled Humidity Products  (Commercial Use)

Energy Content and Combustion Efficiency of Fuels. 

Source:

www.energy.gov/sites/prod/files/2014/05/f15/tech_brief_true_cost.pdf

Emissions

Weight of carbon dioxide in lbs., per one million BTU of energy (1055 KJ).

Fuel Type /Energy Unit Typical Temperature of Steam Conversion Efficiency, %. Common Range. Idling Required Requirement of Super-structure and Water Feed Treatment.
*Natural Gas MMBtu 100-132°C 80-86 Yes Yes ~117lbs
*Coal, Ton 100-121°C 75-90 Yes Yes ~163 lbs.
Electric Steam Generator, KWh. 100°C-1300°C 96-99 No No 0 lbs. (zero) Clean Steam

Brief History (Chronology) of Disruptive Steam Production Methods 

Instant high-temperature, variable steam, and variable backpressure.

Save energy and water.

On-demand rapid high-temperature steam generation.

Compare Traditional Steam Boilers to Modern Steam Generators

Comparison of Steam Generation methods Boilers and Steam Generators

The  MightySteam® and OAB® Electric Steam Generators do not Produce any Greenhouse Gases like CO2, Methane, or NOx.   Only high-quality steam.

Request OAB and VHGA Information

OAB Steam Generator

OAB®

Fixed or Variable Steam Flow. Instant on-off.


Pure Steam

Steam output: 1-180 kg/hr. OAB® Models

Models 4kg/hr, 12kg/hr Single Phase. Instant Steam Generation.

Models 40 Kg/hr, 100 Kg/hr and 180 Kg/hr. Three Phase models for the higher steam rate.

Three-phase systems include PLC and HMI interfaces.

Temperature Range: 250-800°C for OAB-4 and OAB-12.

Temperature range 150-800°C for OAB-40 and OAB-100

Steam Rate Flow Adjustment: Discrete and continuous modes for steam flow adjustments. 

Up to 10 Bar low price production models with backpressure tolerant models are available for high flows.

Request OAB and VHGA Information

GHGA™and MHGA™

Variable Steam Flow Rate, Variable Pressure and Variable Temperature  in One Unit

Steam output: 6-12 Kg/hr Variable Steam Flow Rate.

Temperature Range: 100°C – 800°C and higher. 

Steam Rate Flow Adjustment: Discrete and continuous modes.  Touch screen easy change of flow.

Back Pressure Tolerant Models Available.  Amazing!

Request OAB and VHGA Information

Steam Connectors

Steam Connectors

Request OAB and VHGA Information

HGA-S-01™

For Low Flow Rates

Steam Output: 1 kg/hr.

HGA-S Models: for Pure Steam

Temperature Maximum:

300°C (HGA-S-01) to

1300°C (HGA-CX1300)

Steam Rate Flow Adjustment: Discrete and continuous mode is available

Request OAB and VHGA Information

GHGA 1A

Three Phase GHGA

Request OAB and VHGA Information

What is superheated steam? What is saturated steam? When water molecules exist in a gaseous state, at a temperature above the boiling temperature of the water, it is called the superheated steam state.  Steam only at the boiling temperature is called saturated steam.  The boiling temperature depends on the pressure (e.g. 100°C for 1 atmosphere, 134°C for 3 atmospheres, and so on).  

What is the difference between saturated steam and superheated steam? Saturated steam is always steam at the boiling point whereas superheated steam is at a higher temperature than the boiling point (at that pressure). The main difference between saturated and superheated steam is that the saturated steam is at a two-phase (liquid and gas) equilibrium temperature – so could contain water droplets,  whereas the higher-temperature superheated steam is a high enthalpy gas (called high-quality steam as there are no water droplets in it).  Superheated steam has a higher work potential compared to saturated steam.  Work-potential enables mechanical work and chemical reactions.  Saturated steam on the other hand is often classified as low-quality steam.

What is high-temperature superheated steam?  Steam above the boiling point at any pressure is broadly classified as high-temperature superheated steam*.  Practically at least at 10°C above the boiling point.  For many modern applications of steam, the steam temperature has to be much higher than the boiling temperature (well into the superheated steam temperature range).  Higher than the inversion temperature which is the temperature where one experiences extremely quick-drying and also antibacterial action can occur.   This applies to comparisons between drying agents, such as convective hot air and convective superheated steam systems. Typical steam inversion temperatures are close to 200°C at one atmospheric pressure.

How is it made? With modern rapid steam generators like the OAB® and HGA.  Modern steam generators avoid the requirement of requiring high pressures, unlike the older technology traditional-boilers.  The temperature for most combinatoric-steam applications should be higher than the inversion temperature (typically above 260°C) for reaping the benefits of a superheated-steam-enabled enabled processsuperheated-steam-enabled enabled processes like drying, bio-energy, high-level cleaning, energy production, antimicrobial, bio-digestion, chemical reactions, and many others.   A new area of research is the combinatory steam area for energy reduction. * MHI definition is invoked.  The temperature of good super-heated steam is above any inversion temperature and much higher than the equilibrium saturation temperature. The equilibrium saturation temperature is the temperature (at a given pressure) where water or water droplets can coexist with steam-gas egg the boiling point 100°C at 1 Bar or 121°C at 2 bar and so on.  OAB®  and 4DSintering® are registered MHI Trademarks.  Instantly made high quality-clean steam with high temperatures ranging from 300°C to 1300°C is now available from a variety of models for many beneficially steam applications.  Such applications are growing rapidly.

Where is high-temperature steam typically used? Fuel Production,  Antimicrobial Use, Comfort Humidity Addition, Oxidation and Erosion Studies, Food Industry, Packaging, Chemicals, Cleaning, Materials. Bio-processes, Energy, Hydrolysis, Process Heating, Flavors, Drying, Textiles, and even the Simulation of Martian Atmospheres (Nature, December 2017).  Several more applications are discussed at the bottom of this page.  MHI Steam generators are influencing the ease of use, and ease of installation of steam devices because of the availability of higher temperatures from them.   In contrast with conventional pressure-boilers, steam generators produce steam quickly on start-up, produce high-quality steam, and have fewer restrictions for piping.

What is the inversion temperature of steam?  The inversion temperature is most commonly known as the temperature at which the evaporation rates into pure superheated steam and completely dry air are equal. Typically ~200°C.

Resources:  Steam Energy CalculatorVideos and Media Gallery.

Sustainability:  Superheated steam enhances sustainability by reducing climate risk, accelerating energy transitions, increasing food security and advancing better health oucomes.

Request OAB and VHGA Information

What superheated steam is not?  It is not mist nor fog. Mist and fog have some water droplets in the gas, and thus the name fog. View the comparison pictures of the difference between mist/fog-steam and a high-temperature steam-gas even when produced such that the nozzle area has no mist.  In the picture please note that MHI steam generators produce mist-free gas.

How is good high-temperature steam superheated steam made? Such steam is often produced efficiently by special patent-protected steam generators (unfired steam generators) without the need for any pressure required during the generation process. When the steam is at a high temperature, especially above the inversion temperature, key applications like continuous rapid drying, rapid heat transfer, reforming type reactions, cleaning at many levels, or bio-energy and other rapid reactions become feasible. Steam generators are very rapid-acting (produce steam within seconds). Superheated steam often leads to a reduction in the number of boilers, a reduction in the feed water usage, a reduction in boiler load, improvement in the process timing, a reduction in the reagents, and emulsification with an overall better yield. Inquire about 3DPrinting and 4DSintering with steam.

Why are these devices only possible from MHI? MHI uses patented nano-structured surfaces and other novel materials which have only recently become available commercially for use with active steam.  MHI engineers have combined decades of thermal know-how and recent patented technologies with well-accepted/reliable MHI control systems for high power and high-temperature delivery of steam.  It is a part of MHI’s overall development scheme of smart power for modern thermal applications. Substantial energy savings result from OAB® steam use in several applications.

Please Request Catalogs and Information.

High-grade, high-quality superheated steam offers a good multiplier to process efficiencies – i.e. it is SmartSteam™. The temperature of the MHI steam models reflects the actual steam temperature. The savings efficiencies reported are from an On to Off condition (in contrast please note that several boiler efficiencies are reported only at a steady-state).  No requirement to heat any tubes or nozzles to produce steam.  Several US and International Patents protect MHI steam generators. 

Some key features of the High-Steam-Flow OAB®and HGA and GHGA  generators include: For many facilities, steam is a critical component to keep processes and procedures operating within normal parameters and expectations. With this in mind, it’s important to choose a steam generation system that offers high reliability and exceptional safety, while reducing energy costs, and maximizing operational efficiency. In this webinar you will learn:

  1. No Pressure-Vessel Certifications Normally Required for Atmospheric High-Temperature Steam (depends on the location). Very high velocity exit steam flows. Unique Applications.
  2. Always Stainless Steel.  Unlimited capacity continuous steam generators. Heat up within seconds. Very Low to No moisture. High-quality SmartSteam™.
  3. Improved safety over boilers and autoclaves. (See e.g. reported rupture problems with pressure vessel type autoclaves/boilers). One can search for similar expressions in search engines.
  4. Please contact MHI as several control features in addition to the power controller are feasible for the temperature and flow rate.
  1. On-Off: Rapid steam production (almost instantaneous) with no moisture. Comparisons with Boilers
  2. Very Low to No Moisture even during start-up in the OAB or GHGA. MHI BoilerFree™ Technology allows for a continuous superheated steam generation, unlike a boiler which has to fill up a steam chamber and then discharge the steam in a batch mode.
  3. Energy efficiency is reported socket to output. Nearly 90-99% Outlet to Output Efficiency, MHI Rating.
  4. Zero Combustion or No High-Frequency Processes. No High-Frequency Disruption, Zero Device NOX Emissions, No Ventilation Needed for combustion gasses.  Steam velocity at exit is greater than 50m/s.  More Information. 
  5. Offers multiple hot exit choices. More Information.
  6. New Steam-Air mixtures.  Typical Specifications for  HGA-M-01

Easy Fit to Industrial Production Machines and Tunnels
Steam Chamber Continuous

Energy Saving Tunnels

Industries where superheated steam is used:  Energy, Cleaning, Textile Processing, Pulp and Paper, Cooking, Drying, Disinfection and Sterilization, Cleaning and Recycling, Drying Paint, Drying Machine Parts, Re-forming Surfaces.  Food and storage products, Tobacco Products, Textile Mill Products, Apparel, and Other Textile Products, Lumber and Wood Products, Bio mass-energy, BioPharma, Oxidation studies (inorganic and organic), Paper and Allied Products, Steam spray in the hospital uses, greenhouse, soil, Printing and Publishing, Chemicals and Allied Products, Petroleum and Coal Products, Petroleum Refining, Rubber and polymers, steam injection, emulsification, Plastics Products, Steam Chest Molding, Leather and Leather Products, Stone, Clay and Glass Products, Cement, Grain, Canola, Alfa-alfa.  How to specify an OAB tunnel. Antimicrobial use industries are Chemical, Hospitals, Paper/Corrugating, Power Generation, Tobacco, General Manufacturing, Animal Feed, Dairy, Hotels, Petroleum Production., Rubber, Wire and Cable, Oil & Gas, Automotive, Food Processing, Marine & Offshore, Pharmaceutical, Steel, Mining, Beverage and similar.

Steam Plasma

Industries where continuous steam is used: Hydraulic, Primary Metal Industries, Blast Furnace and Basic Steel Products, Fabricated Metal Products, Industrial Machinery and Equipment, Electronic and Other Electric Equipment, Transportation Equipment, Instruments and Related Products, Chemicals/Petrochemicals, Electronics, Oil and Gas, Ethanol, pre-treatment of biomass, Pyrolysis, Oil, herbs, Steam Reforming, Complex Methane Ammonia Producing Reactions, Hydrogen reforming, Biodiesel fuels, Finishing, Food, Packaging, Printing, Paper, Pulp, Converting, Forest Products, Comfort Steam, Pharmaceuticals, Plastics, Rubber, Batteries, Electrode drying, Vinyl, Bio-solids, Sanitation, Disinfection, WGSR reactions, Low oxygen content H2O gas, so dry and could sometimes even be for sterilization, Soil re mediation, steam stripping of Volatile, industrial propane dehydrogenation processes, Pulp, hog/animal-fuel, clean or emulsify bark sludges, Reverse water gas-shift reactions and flavor reactions, Lumber and/or efficient Paper-drying, peat/jute drying, Gasification-reactor, Consider for vacuum production steam in ejector nozzles with steam or steam air mixes with over 50m/s steam exit velocity, Textile-drying, Drying. Swelling Starch, Starch Granules, Starch Gelatinization. Cleaning with MightySteam • Humidification for Dry and Humid Atmospheres in Ceramic, Paper Rolls and Comfort Processing, Work and Propulsion by Steam, Heating, and Sterilization, Vacuum, Oven-use. Atomization of Fluids, Motorization, and modification. Waste to Fuel Prototype and Simulation.  Ask MHI for Sample Catalytic Surfaces Quasi R or for ceramic substrates that can take catalysts.

Steam Chambers up to 1300C for oxidation studies and food contact studies in a pure steam environment.

Steam for Packaging and Textiles

While several applications offer down-the-line energy efficiencies with high temperature superheated steam use, one typical application is to make hydrogen with steam reforming of methane or organic materials, here the higher temperatures give rise to considerably better efficiencies of reactions. Food Safety Use. Food Security. Vertical Farming.  Dryer Configurations: Batch/Cabinet, Can/Drum, Continuous/Conveyor, Deck, Loop, Loft, Paddle, Ring, Roll/Cylinder, Rotary, Shelf/Tray/Truck, Skin (both artificial and inorganic), Tensionless, Frame, Tower, Tunnel, Warp, Web, Wicket.  Dryer Types Possible: Centrifugal, Combination Infrared/Convection, Attenuate CFC and HCFC Conduction, Convection – Counterflow, Convection – Impingement, Convection -Flotation, Convection, -Through-Air, Dehumidifying, Flash, Fluid-Bed, Infrared – catalytic, Infrared – Longwave, Infrared – Medium-wave, Infrared – Short -wave, Microwave, Radio Frequency, Spray, Steam, Vacuum.  Energy Source: Dual Fuel, Electricity, Steam.  Materials Dried, Food, Paste/Mixes, Powders, Slurries, Solids, Solvent-based Materials, Water-based Materials.  Manufacturing Process:  Calcining, Curing, Dehydrating, Drying, Dry sand and investment molds, Finishing, Fusing, Granulating, Heat Setting, Acoustics, Research, Heat Shrinking, Laminating, Moisture Profiling, Pasteurizing, Pre-and Post-Drying. Industries Served: Chemicals/Petrochemicals, Electronics, Alternatives to Waste Heat Boilers Augmented,  Oil and Gas, biotic and abiotic cleaning, Ethanol, Biodiesel Fuels, Hydrolysis, Finishing, Food, Packaging, Printing, Paper, Pulp, Converting, Forest Products, Pharmaceuticals, Plastics, Rubber, functionalize graphite, graphene, Boron nitride, Vinyl. Biosolids, include Sterilization, Soil remediation-steam stripping of volatile, pulp, hog-fuel, bark sludges, Paper Drying, Peat/Jute Drying gasification reactor, Textile drying, salt drying, and reclamation.  Should you be using steam, steam, water, and steam air mixes in de-Superheaters, a better control could be direct with OAB® or HGA-M models.  Steam Tunnels.

MHI systems are used for Fuel Production whether in Gasification, Pyrolysis, Combustion, Digestion or even Fermentation -kinetics enhancement.

Have you considered Flash removal with Steam or Cascade e-ion (de-Flashing)?

Want to find out how MHI can help you meet your steam needs?

Please fill out a quick questionnaire by clicking on the product of interest.

We will help find a good solution to meet your needs.