Steam Applications

With the advent of new high-temperature high-quality dry-steam, a number of enhanced designs and energy-efficient process-applications have recently become possible.

Heating Applications:  Steam offers heat transfer coefficients that are very high. The heat-content is also very high.  Steam dries faster than air above the inversion point. Use one of these generators.

Antimicrobial Application:  Dry high quality low-oxygen steam is a known antimicrobial agent without any organic residue.  The canning and bottling industry uses a considerable amount of steam.  The productivity increase with the availability of MightySteam(TM) – high temperature, dry and instant is remarkable particularly for soil remediation uses.  For learning tutorials please click here.  Use HGA-S, HGA-M or MightySteam.

Chemical and Fuel Production:  Many steam reactions are beneficial for energy production and biomass. Super-heated steam offers high kinetics and clean chemistry.  Waste-to-fuel discrete community fuel production, hydrogen economy supplier.   Consider the OAB-4-750 or OAB-12-750 or the OAB-36

Penetration: Steam as it condenses, continues to wick.  Use one of these generators.

Additive:  Add to Gas Or Plasma Streams. Use one of these generators.

Low Pressure Steam: Check out the options.  One Atmosphere Boiler OAB® Other Suggested Applications.

Typical Applications of Super-heated Steam are Drying, Antimicrobial, Steam-heating, Fuel Production and  Chemical Reactions.  Improve productivity with steam – use a temperature higher than the inversion temperature.

Industrial Sector
Products
Biomass (for electricity generation)

Waste to Fuel (see below)

Sawdust, wood fiber, pulverized coal, wood chips, wood pulp, spruce and birch bark, milled peat, peat for briquettes, Fuel from Waste, Municipal and plant waste.
Chemical industry Washing powder, pigment, potassium salt, powdery chemicals, catalysts, coloring agents, regeneration (chemical), carbon activation.   It is recognized that the process for turning rubber compounds into usable finished products is vulcanization. There are various types of vulcanization.  Most economical is open vulcanization which can take place in hot air or in steam.  In the past proper hot steam was not available nor was high-life hot air.  Now patented MHI products that offer a wide variety of both steam and hot air and hot process gasses very accurately and with units that have extremely high warranties have changed this landscape
Food industry (sugar) Sugar beet pulp, dietary fiber from sugar beat,
Food industry (base materials) Hog fuel, corn fibers/fibres, protein containing base materials (soy beans, rape seed, sunflower seed, soy meal, okra, etc.). Peel vegetables like potato or tomato or dry vegetables, essential oils, organic compounds. Fuel from waste food is offered above 750 C.
Food industry Shrimp, pork, bamboo shoot, paddy / rice, herbs, cacao beans, corn gluten, tobacco (drying, expansion). From cooking to cleaning. Videos and Media Gallery.
Food industry (starch) Starch, potato, vegetable, wheat flour, distillers grain and other staples. From cooking to cleaning. reported to much better than vacuum drying., flavors and vat heating, scents.
Food industry (meat) Pork, bone meal. Clean meat tables and study tables. Food laboratory. Review a study. Canning, Bottling and Packaging

Improve productivity and efficacy

Epoxy. Mold Curing and drying. Polymer curing, reactions, coagulation. Drying of sand molds and investment molds.
Chemical processing Reaction kinetics manipulation, water-shift and WGSR,  reverse water gas-shift reaction, flavor reactions, photosynthesis, azeotropic distillation, volatile(s) manipulation, rubber vulcanization
Paper & pulp applications Paper, fiber/fiber sludge from waste water treatment, drying
Textile applications (Coated) textile, drying, cotton fibers, improve water uptake, improve quality of fiber yarn for cotton
Waste materials Industrial wastes, filter cakes, sludge from water purification, municipal sludge
Vegetables & fruit Vegetables, Tea, Coffee, herbs
Dairy industry Milk powder, flash drying
Potato Potato products, fries (pre-drying)
Metal finishing For antimicrobial and other types of cleaning/finishing metals, semiconductors, silicone/plastics, rubber, composites and ceramics.
Building materials Wood, lime mud (before calcination), paint, adhesive, mineral wool, fibres, lumber, cement curing, Shrink wrap packaging, quick energy efficient use.
Laundry industry/ General to special cleaning Laundry, dry cleaning, cleaning (several levels including microbial). Clean bio-implants and textiles.
Textile fiber enhancement Improved torsion strength of the fiber
HVAC cleaning please click to cleaning

Videos and Media Gallery

Superheated High Q Steam Generators – 1kW | Superheated 1KW Steam Air Mix Generator

High Efficiency Steam Recirculating Ovens

Bring your designs to life with beautiful colors and creative shapes. Become a high quality-steam user.

Why use an autoclave if your need is actually high temperature steam?  Creating pressure and releasing pressure is a huge waste of energy.

Calculate the energy used in pressurization/vacuum and compare with the OAB® and HGA steam.   Compare the foot-print of traditional steam boilers with with the OAB® ?

Commonly Asked Question:  Does one need high pressures or vacuum for steam to penetrate textiles or cloth packs? Answer: Most often no – provided the steam is super-heated adequately.

Steam self-propels as a gas.   Use this unlimited capacity of propagation from continuous steam generators.

BPE/CPG

Contact MHI for

Textile Applications with Smart Steam

Innovate, take the smart risk to save energy.

Milk…..Solvent recovery.

Food Safety

Want to find out how MHI can help you meet your steam needs?

Please fill out a quick questioner and we will help find a good solution to meet your needs

 Steam For Fuel From Waste

Gasification:   Gasification is the conversion of waste materials that takes place in the presence of limited amounts of oxygen – a thermochemical process.  Steam or the oxygen in the air is reacted at high temperature with the available carbon in the waste material to produce gases such as carbon monoxide, hydrogen and methane. Gasification processes produce a “syngas” (hydrogen and carbon monoxide) which is used for generating electricity power.  Thermal gasification of the waste materials allow the production of a gaseous fuel that can be easily collected and transported. Gasification typically takes place at temperatures from 750-1100°C.

Pyrolysis: This is also a thermal process similar to gasification above which involves the thermal degradation of organic waste in the absence of free oxygen to produce combustible gases.  Pyrolysis uses heat to break down organic materials in the absence of oxygen e.g with steam heating to 1250C. Materials suitable for pyrolysis processing include coal, animal and human waste, food scraps, paper, cardboard, plastics and rubber.  The pyrolytic process produces oil which can be used as a synthetic bio-diesel fuel or refined to produce other useful products.  Sometimes the  byproduct of pyrolysis is a kind of fine-grained bio-charcoal called “biochar”, which retains most of the carbon and nutrients contained in biomass so can be used as a soil enhancement to increase soil productivity.  During Pyrolisis volatile gases are released from a dry biomass at temperatures ranging up to about 700C. These gases are non-condensable vapors such as CH4, CO, CO2 and H2 and condensable-vapor of tar at the ambient temperature.   Cellulose can break down into Char, H2O, CO2 and methane.

Combustion: Use the Airtorch+Steam combination for a clean most common and well-proven thermal process using a wide variety of waste fuels. Municipal and household waste is directly combusted in large waste to energy incinerators as a fuel with minimal processing known as mass burning.  Combustion can be with a solid, liqid or gas reactant with oxidation. The Boudouard reaction (solid combustion) is stable above 700C to eliminate CO2 because  CO2(g) + C= 2CO(g).  Above 700C one can use CO(g) as a reductant for oxides as is done for iron oxide reduction. Link to MHI Fluidized Bed Designs.

Digestion: Landfills are  the primary method of disposal of municipal solid waste and if left undisturbed, landfill waste produces significant amounts of gaseous byproducts, consisting mainly of carbon dioxide and combustible methane (CH4).   This landfill gas or bio-gas is produced by the (oxygen-free) anaerobic  digestion of organic matter.  Treatment by steam is often recommended for elimination of certain harmful bacteria.  Anaerobic digestion to produce bio-gas can either occur naturally producing a landfill gas, or inside a controlled environment like a biogas digester. A digester is a warmed, sealed, airless container where bacteria ferment an organic material such as liquid and semi-solid slurries, animal wastes and manures in oxygen-free conditions for bio-gas.  An advantage of anaerobic digestion for converting waste to energy fuel is that it employs  semi-solid or wet waste.  This is normally a small scale operation.  The bio-gas produced can be burned in a conventional gas boiler to produce heat or as fuel in a gas engine to generate electricity or fuel some of the farm vehicles.

Fermentation: Fermentation uses various microorganisms and yeasts to produce liquid ethanol, a type of alcohol, from biomass and biowaste materials. The conversion of waste to energy by fermentation requires a series of chemical reactions to produce the ethanol biofuel. Here steam can be directly introduced for rapid kinetics.  Multiple reactions occur.  The first reaction is called hydrolysis, which converts organic materials into sugars. The sugars can then be fermented (similar to making alcohol) to make dilute ethanol, which is then further distilled to produce a bio-fuel  ethanol.

Typical high temperature steam i.e H2O(g), CO(g) and CO2(g) reactions for consideration for CO2 removal (one atmosphere) or for making H2 (gas).

CH4(g) + H2O(g) = CO(g) + 3H2(g) Steam Reforming above ~750C.  The opposite direction reaction is sometimes called the Fischer-Tropsch process.

CO2(g) + H2(g)=CO(g) + H2O(g)   Water Shift.  Feasible above ~820C

Combination of Greenhouse gasses (also called high temperature greenhouse gas reactions):

CO2(g) + CH4(g) = 2CO(g) + 2H2(g) Feasible above ~650C or via the steam reforming and water shift shown above.  AGain the products are reducing gases that can be used for various reducing reactions including cleaning and shiny metal production such as Fe2O3 + 3CO(g) = 2Fe + 3CO2(g) (weak) or Fe2O3 + 3H2(g) = 2Fe + 3H2O(g) above 515C.  Note also that CO2(g) + CH4(g)=2C + 2H2O(g)  is always feasible at >100C but is extremely weak.

It appears that the worst greenhouse gases Methane can be Converted to Non-greenhouse gases CO and H2. These reducing gases can be used for reducing some metal oxides. So either the OAB or Airtorch may be used.  At this point catalysts become become important.

Note that several gases can be toxic and only professional use is recommended.

Waste to Fuel reactions can also be considered and there is a push to make liquid fuels by using a multitude of reactions.  The entire focus of these types of reactions has changed because of the CO2 and CH4 green house problems.  Ask MHI about simulated photosynthesis and flavor reactions.

Key Parameters (typical) for Various Steam Applications

Use the OAB® Steam for Oil Softening of Heavy Oil in Wells and Tanks. Transition towards smart capital expenditure (CAPEX) and innovative operational expenditure (OPEX) are imminent in the oil and gas industry, especially with highly unstable barrel prices. Reduce foot print. Easy to carry. Reduced use of electric and water. Use for Oil Mud. Most Compact.

OAB® Oil Softening Test.

Pilot Plant Steam Generator for Possible Pharmaceutical Applications.

Safer because no pressure leaks, high temperature kinetics and energy efficiency.

Simple SaniZAP Clean dirt and grime in difficult to reach places. First soften and clean with handheld superheated steam then power-blow with hot air. Need more steam – the OAB models are ideal. Steam-soften with the proper superheated MightySteam. Then VTA hot air blow with the powerful VTA-1GC hot air powerblower unit. Simple. No water mess and use of the highest temperature steam. Use for restorative cleaning and de-greasing.

What are the germiest spots in an airplane?

Super Heated Steam in the fight against Hospital Acquired Infections

Germs in your home

Contact us to see what data we have on Bed-Bug removal with MightySteam and Superheated Steam

Pilot Plant Steam Generator for possible steam reforming, with carbon, bio-products, bio-charcol gassifier or methane and nitrogen for ammonia applications. The steam generators from MHI namely the OAB and HGA devices are very efficient, controllable and clean.

For example the reaction 2N2(g) + 2CH4(g) + 2H2O(g) + O2(g) = 4NH3(g) + carbon oxide by products  is a negative free energy feasible reaction at 400C.  Or use for bio diesel,or with carbon to produce hydrogen or other clean fuels.

Electric Steam Generator. Foam cutting high speed, low power, no mess with thermal steam cutter. Use best steam that evaporates on cutting. Ultra High Purity Steam. Also called UHP or UHT steam. Textile, continuous heat setting and laundry steam chamber use.

Superheated Steam Generator for use in steam oxidation studies. Use HGA-S or HGA-M.

Continuous steam. Unlimited capacity.

Save big on easy paint removal techniques with MHI steam from enamels to hard paints (view powerpointinquire or rapid buy). Can you find a better paint remover? Foam cutting. Thick foam cutting speeds ~1″/s.

Save 90% energy for cleaning (example for bird droppings). Consumer packaging labels. Improved energy, less water use, improved speed and quality.

Energy Saved for Laundry or Garment pressing. Car seat Pressing. Laundry Use.  The energy requirement is approximately 0.15 – 0.30 kWh / kg of linen (source http://www.rabc-wfk.com/module3/Module3_EN.pdf). This is a good number for dry-cleaning but for full steam drying it may be best to use a number like ~1kWh per /kg. If you are using and paying operationally for a 300kW boiler (1,024,327 BTU/hr) (or 30BP); are you dry-cleaning 900 kg (close to a ton of linen) of laundry in an hour? If this is not so please consider OAB instead to save energy. The cost of energy is similar whether gas or electric. Click here for savings from energy efficiency.  Garment dewrinkle, heatsetting and textile conditioning in a raoid energy efficient manner.

Energy saver for heat set of textiles (dye drying). Choose OAB-4-300 Model.

Drying of silicates, sand, porcelain and investment molds during casting.

Drying with steam- ceramics to textiles. Choose steam higher than 250C. Non condensing. Note OAB steam generators may be turned off and on quickly unlike most pressure vessel type boilers. Continuous steam without pressure drop again best for quality control. Most often neither pressure or vacuum is required in an applications. Pressure is often just a way for traditional boilers to achieve high temperature- not required for the specific application. See also Steam Energy Calculator and steam kinetics.

Seats pressing in rapid demand operations like automobile seats manufacture. At 10 cents per kWh a 300 kW boiler operational cost could be as high as $30 an hour. A 10 kW OAB machine reduces this payment to ~ $1 per hour. Many electric companies offer grants to make capital changes with energy efficient new machinery. Whether a 12 kW OAB may substitute for a 300 kW boiler depends on the application. Most applications where a high velocity jet is required can be met by the OAB® . Please see video in Videos and Media Gallery section.

In many applications a de-Superheater is required.  This is a complex mixing of steam and water and very nozzle dependent.  The OAB, HGA-S and HGA-M orovide modern solutions for mixing at reliably low cost conditions

Improving starterter oxidation for copper tubes.

Steam Copper-tubes for water delivery to start protective oxide (Malakite) barrier in them. Reduces copper contamination and other contaminants from pipes that do not have this starter oxide. Do internal pipes. Please contact MHI for known technical results and referal to the proper EPA laboratories for your carification.. User may need to call government agency for proof of results. Please contact MHI for details.

High Pressure Steam Boiler can be avoided. Laundry boilers, tunnels and other energy improvement uses are possible in the garment and laundry industry. Several levels of efficient cleaning and de-wrinkling Higher temperatures de-wrinkle leather more easily. E.g. Clean fifty pound loads with an OAB® and canopy. The canopy does not need to be a heat dissipating rigid surface!
Choose your own steam bluing/blackening for attractive surfacing. Use steam generator for steam oxidation studies. Use Process Steam for oil (normal and heavy oil) and natural gas to reduce viscosity.
Commercial Steam Boiler and OAB. Cheese Making.

Heat Processing to make cheese is varied the type of technologies used in practice. The time and temperature programme for heating is determined by the method of heating and the type of cheese. Some cheeses require heating to temperatures above 40°C-56°C (133°F) Normally at 37 – 38°C the activity of the mesophilic lactic acid bacteria is retarded. Time is taken check the acidity, Above 44°C or more the mesophilic bacteria are deactivated, and they are killed if held at 52°C between 10 and 20 minutes. Heating beyond 44°C is typically called scalding. Some types of cheese, such as Emmenthal, Gruyère, Parmesan and Grana, are scalded at temperatures as high as 56°C (133°F) . Some of the most heat-resistant lactic-acid-producing bacteria survive this treatment e.g. Propionibacterium freudenreichii ssp. shermanii“. Credit to http://www.food-info.net/uk/dairy/cheese-production is acknowledged for the above information.

Pure Steam Generator. Milk and Cottage Cheese. Augmentation of process. Significant reduction of energy from unwieldy and high Btu/hr (kW) boilers currently see use.

A frequently asked question is: I do understand that milk products have increased considerable resistance to deterioration when UHT steam is used. However will this denature protein in any way that is bad for me? The answer can be found on many web sites like http://www.bodybuilding.com/fun/muscle-mystery-does-denatured-protein-still-make-you-grow.html. Bakery Operation with on demand (on-off) steam. Food processing humidification.Benefits that may also follow from SW-OAB® Steam in addition to saving considerable energy for shrink labeling activities. — OAB® and MightySteam®’s patented heating system
and service allows for an industrial strength steam output.

Dry Steam OAB(TM) and HGA(TM):  Steam cleaning is a viable alternative to solvent cleaning in various applications, such as metal surfaces, electronic components, gilded-art-objects and anilox-rollers, decontamination of microbially-contaminated surfaces, disinfection and sterilization, food decontamination, weed extermination, and radioactive decontamination.

Continuous Superheated Process Steam for Odor Removal and Other Uses.  Carbon Activation.  Superheated steam can be used for physical/chemical activation of carbon resulting in enhanced nanoporous and porous structures of carbon ( about 10-(50-80) nm). The resultant carbon is called activated. It is higly porous and activated. This nanoporous/mesoporous microporous structure is expected to enhance the removal of toxic hydro-carbons and other dangers from waste water/water works and from gas. Continuous steam temperature that is required is greater than ~800°C and dry. Please consult MHI for known techniques for start-up of carbon containing canopies or drums. One important requirement for this is the availability of instantaneous steam, within minutes because moisture if present tends to clog pores. The OAB-4 system or the OAB-12 system makes instantaneous steam. Please see video on Videos and Media Gallery. Electric Superheated Steam. What is the difference between Disinfection and Sterilization? See box below.
Steam temperatures greater up to 1300C.

Nightmare bacteria, shrugging off antibiotics, – on rise in U.S

Steam Sanitation: Studies have shown that even 1 second of residency time of 248°F (120°C) steam is roughly 97% effective against common strains of bacteria1. In controlled experiments, higher temperature steam requires lower residency times to achieve effectiveness. This result most likely follows the common law of chemical kinetics where speed increases exponentially with temperature.

What is the difference between Disinfection, Sanitizing and Sterilization? Sterilization vs. Disinfection vs. Sanitation
There are 3 fairly commonly accepted levels of “clean” in many industries. Sterilization refers to the statistical destruction and removal of all living organisms. Disinfection generally refers to inanimate objects and all vegetative cells, but not spores. Sanitation refers to the reduction of microorganisms to levels considered safe from a public health viewpoint. The official definition of sanitation, according to the Association of Official Analytical Chemists, for food product contact surfaces is a 99.999% (5-log) reduction of contaminants in a 30 second period. For non-product contact surfaces, a 99.9% (3-log) reduction in contamination is necessary. What is anti-microbial cleaning?

Sterilization requires 6 to 12 log or more cleaning potency mostly done in steam sterilizers that are approved for this purpose. the antimicrobial market has been largely comprised of chlorine (bleach), ozone, quaternary ammonium compounds (quats), per-acetic acid (PAA), formaldehyde and glutaraldehyde (aldehydes), and hydrogen peroxide. All of these technologies have limitations in addressing sanitization and disinfection needs.

Steam is powerful. Se Patents Other published patents have shown superheated steam can clean upto sterilization levels. Patent numbers 8,940,245, 8,945,468, 8,652,403, 8,435,459 and many others that are available. See also http://www.diffen.com/difference/Disinfect_vs_Sterilize

Steam Boiler for Steam Kettles, Processing Mash with Steam, Saving Energy and Materials. Save considerable energy and time. Generally from cold start cut up to 1/3 the time. Will preservatives be reduced by steaming – most likely not? Commercial Steam Generator for packaging

View efficient steam tunnels for packaging, shrink wrap, antimicrobial and textile

Industrial Steam Generator and Tunnel for cotton fiber moisture doubling. Moisture in cotton yarn fiber is able to make the fibre more abrasion resistant as well as more fatigue resistant. Use for heat-set and save considerable energy. No need to use vacuum or pressure chambers. Review amazing ROI.

SaniZap® technology is employed in the MightySteam™ line of steam cleaning products and also by the MightySteam™ service which represents a service that provides for the cleaning of interior and exterior surfaces utilizing concentrated superheated steam for residential, commercial and industrial purposes.

Tankless Instant Steam Generator

Steam and continuous steam chamber for curing rubber or plastic and improving fibers for textiles (cotton)

Type of Cotton (Treatment) Moisture Meter Reading on a low humidity day (Base 35 %RH in Cincinnati) Moisture Meter Reading on a very high humidity day. (Base 70 %RH in Cincinnati) Torsion abrasion comparative test.

Relative Scale

Untreated 3 – 5.2 4.9 – 5.8 2-4 Low
Vacuum Steam Treated by Conventional Process 5.9 6 – 8.5 9-12 Medium
MHI steam (tested after about 4-6 days post treatment) 8 – 9.5 10 10-20 High
Endotoxin Free Steam Industrial Steam Boiler
Laboratory Superheated Steam Low Pressure Steam Boilers
Electric Superheated Steam Generator High Pressure Steam Boilers
High Temperature Steam Low Pressure Steam
Low Pressure Steam Boiler Steam Generator Boiler/Electric Steam Boiler
Steam Roasting. Activated carbon by steam both Stage 1 and Stage 2 (Steam of 700C and 1100C). Rare-Earth processing by steam.  Rare earth metals are a group of 17 elements – lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, scandium, yttrium – that appear in low concentrations in the ground. Use OAB Steam for Chemical Reactions

Steam Reactions with Hot Clean Steam

e.g. heating of a liquid ethanol-water azeotrope/azeothrope

Azeotropic distillation

Electric Steam Super-heater Steam Boilers
Steam Reforming Hydrogen Wine barrel conditioning and reconditioning. See also hybrid.
Heavy Oil recovery with low energy and water input. Use in Oil storage and Oil tanker applications.
Wood Conditioning for utility, packaging and hobby use. Safe kettle-heating for Breweries, Flavors and other such use Industries.
Energy efficient kettle heating for Breweries, Flavors and other such uses. Superheated Steam Drying
Instant Steam Generator Superheated Steam Boiler

Touch-up steam – 1Kg/hr of steam up to 400°C. Use for steam spray purposes only.
Request OAB Information

How much money savings from energy savings with smart steam power technology

Lower power consumption by : 1 kW 10 kW 100 kW
Approximate savings per year of : $876 $8760 $87600

Assumptions include 1 kWhr costs 10 US cents. Continuous use for the year.

Compare the OAB to:
Fire Tube Boilers Water Tube Boiler
Industrial Boiler Gas Steam Boiler

Traditional boilers yield saturated steam (Tsat and Psat are linked).  Note that Steam generators do not have to operate at high pressure for the high temperature.  They work at 1 Bar safety.  Thus one can get high temperatures without unwieldy pressures – with a steam generator.  For example with  a boiler one needs a high 10 Bar and even then the saturation temperature is only 180°C  -even at 100 Bars the saturation temperature is only 311°C.

Steam generators operate routinely at 300°C,  i.e. well above the inversion temperature. If the steam is for heating purposes, please compare the enthalpy and you will be surprised.   If the steam is for work purposes please use the work potential row below, the work potential increases with both temperature and pressure. Work potential is measured from 25°C base temperature.

The cost of boilers increases for very high pressure ratings.  Traditionally the steam generators offer 95%+ efficiency – boilers could be much lesser and also loose efficiency with pressure ratings.  However even at 100 Bars the saturation temperature is only 311°C.  Again a fairly easy and routine temperature from the OAB type steam generator.

1 Bar =100000 Pa = 14.5 psi, 10 Bar =1000000 Pa =145 psi, 100 Bar = 107 Pa = 1450.3 psi