Did You Know Trivia?

Sponsored by SmartEnergy™ Modern Technology Companies

MHI Logo MightSteam
Plasma Systems Steam Solutions

 

(Please cite as www.mhi-inc.com)

 

May 12th, 2019

Did you know productivity can be vastly improved by simple change-factors? For example:

Increasing the Temperature. Big Influence. The Temperature impacts the Reaction Rate, Energy Efficiency, Heat-Transfer Rate and the Equilibrium Constant. Temperature has an influence on the rate of heat transfer.

Increasing the Pressure. Small effect.

Increasing the throughput with improved time-management processes. For example continuous processing over batch processing, or with open system processing over closed system processing.

Improving the Temperature Uniformity and Optimizing the type of energy transfer mechanism for the desired uniformity. Typical energy transfer mechanisms of interest are convective and radiative, enhanced by the e-Ion types of energy transfer/efficiency. Gases can be easily heated with the efficient Airtorch process-heater technology. Solids and liquids may be preheated with safe energy-efficient furnaces.

For more information please access https://mhi-inc.com/superheated_steam/steam-calculator-superheated-tables.html

May 4th, 2019

What does $1 (US) get you from the use of energy?

  • Household: @ 10c/kWhr, one dollar will provide full lighting and other common device use needs for about one to two days for an average US household

  • Travel: @ $2.5/gallon of gasoline an average modern car will travel about 10 miles for a dollar. Assumes 25 miles per gallon efficiency.

  • Industrial: @ 10c/kWhr, one dollar will allow for 1000 bottles to be shrink-wrapped every hour with a modern steam generator that draws 12kW of power. https://mhi-inc.com/superheated_applications.html

April 28th, 2019

  • The world today has approximately 7 Billion People.

  • We use energy to sustain our bodies and to do useful things that improve the quality of life. The way we use energy is to convert it from one form to another.

  • However, we create bad waste products in the process of energy conversion - such as excessive CO2 when we combust something.

  • The quality of available energy is continuously decreasing although the total amount remains the same.

  • The annual energy consumption is ~500+EJ/A ( Exajoules/Annum). This amount is expected to peak at~600EJ/A in the year 2030

  • In the future, a large part of the savings of high quality energy will come from smart machines that use lesser energy for the same objective, thus reducing the rate of energy degradation. (see e.g. www.mhi-inc.com).

  • Did you know? Significant energy savings are expected in the future from tribological improvements (sometimes estimated as high as 100EJ/A) just with new surface technologies?

April 20th, 2019

Spiral profiles optimize properties including radiation properties. See for example https://mhi-inc.com/Microheaters.htm.

A spiral is an involute curve which emanates from a point, moving farther away as it revolves around the point. The most common form is the Archimedean Spiral defined by the equation r = a+ b(theta) in polar coordinates. A helix and vortex are three dimensional spirals. Nature invokes these shapes for a variety of building blocks from galaxies to cellular matter. Spirals are also key thematic blocks for many art forms. Spirals and vortex depictions can be found across historical art forms e.g. pre-Columbian art in Latin and Central America. Spirals are also are a psychedelic form of art to depict hypnotic effects.

Did you know that the involute shapes have amazing properties that make them extremely important for engineering products? From gears, compressors and fans, the involute shaped products allow for low-friction, low-noise and high-life. Now abundantly used in radiation heating.

April 13th, 2019

Did you know the difference between ancient furnaces and modern furnaces? There are two major differences.

Modern furnaces are electrically heated (no combustion) - so they reach high temperatures exceeding 1700°C (3092°F). Electric heating allows for process control, improved process productivity and therefore much higher efficiencies.

The second is the roof span. Earlier, only fire-bricks were available and roof shapes and spans of these furnaces were constrained by arches and chimneys . Today, a host of new composites are used in furnace construction. Newly available materials like NanoFractalAlumina allow for very wide roof spans. When coupled with modern roof hanger designs, the roofs can be made to span several feet in width. Examples are seen in https://mhi-inc.com/PG4/high-temperature-lab-furnaces.html

April 6th, 2019

Did you know advanced material companies are rapidly increasing the power density and temperature available from clean electric sources? Electric sources mean cleaner environment compared to flame heating.

This has implications for materials processing, intergalactic transport systems as well as simulators. For comparison, note that a methane gas flame has an average* temperature range of 900°C to 1500°C. Fire is ~1200°C. Electric glow panels now offer 1900°C with high power density ~up to 150W/sq.in and full control. Airtorch heating is 15000 Watts per sq.inClick here for a table showing the comparison of the Power Density from Lasers, Sunlight, Gas Flames and More. Sources: https://en.wikipedia.org/wiki/Flame and https://mhi-inc.com/PG4/eion-plasma-device-family.html#side-tab6 . *Note that the average temperature is not the same as the peak temperature.

March 30th, 2019

Did you know that principle of increasing entropy mirrors the arrow of time?

Now several researchers are examining if aggregate social behavior, the formation of galaxies and life itself may have very similar driving principles. Did you know it is a common simplification that entropy is just thought of as a measure disorder or a comparative measure of the quality of energy? This would be true of course if the temperature was identical . The aggregate of total entropy in the universe (which could just be an isolated control volume) has to increase for anything to happen. But locally, entropy can increase or decrease giving rise to ordered-clumps that are not well mixed with the rest of the space. Did you know there can be many pathways for a spontaneous process but one of them may be the most probable – a conclusion from a yet evolving principle (that is being tested) which indicates a requirement to maximize the rate of entropy generation along the preferred pathway. https://mhi-inc.com/Converter/watt_calculator.htm

3/23/2019

Did you know a near doubling of the average U.S. manufacturing growth is predicted for the 2018-2021 period from 1.5% to 2.8% from the earlier periods (reference Foundation)?

It appears that energy issues and productivity will become keys to planning the growth of industrial products in the future. One of the most dramatic changes is seen in the innovations for energy use in a variety of applications https://mhi-inc.com/MHIProduct.html. Nano-molecules and nano-technology aid energy conservation in a multitude of direct and indirect ways and have become a key part of growth-strategies. An example is texture of surfaces.

3/17/2019

  • One Joule (J) is equal to amount of energy required to raise an apple to a height of 1 m.

  • 1 KJ (KiloJoule) is equal to the chemical energy converted to heat by one burning match.

  • Heating a cup of water to 100C takes about 30KJ. Boiling it - another 300KJ. To lift 1 Kg close to space the energy required is about 100MJ (MegaJoules).

  • The approximate price of electrical energy of 100MJ (~28KWhrs) is about $3 (not including the rocket!)

  • A Watt (W) is the energy conversion per second, J/s. A human converts energy at the rate of about 200W during normal activity.

  • Did you know that electric devices are cost effective because they offer the ability of precise control. See http://mhi-inc.com

3/9/2019

Did you know that the objective of many sensors and devices is to convert one form of energy to a more useful form?

Some typical devices that are used for energy conversion are described below.

Device Type                 Energy Conversion

Thermoelectric           Converts Heat to Electric Work

Heat engines               Converts Heat to Mechanical Work

Fuel Cells                     Converts Chemical Energy to Electric Work

Photosynthesis            Converts Radiation to Chemical Energy

ATP hydrolysis             Converts Chemical Energy to Mechanical Energy

Battery                         Converts Chemical Energy to Electric Work

Microphone                Converts Oscillatory sound energy to Electrical Wave Energy

3/3/2019

Natural crystals are found in the ground where the earth’s high-temperature and high-pressure may have influenced their formation. Quartz is one such crystal widely used for conducting electricity.

A crystal (solid) family is determined by lattices and point groups. Many crystals are also created in laboratories under controlled conditions for specific and demanding applications. Did you know that jet engines have turbine blades grown by directional solidification of metallic crystals in gradient furnaces? For more information https://mhi-inc.com/PG3/robust-radiator.html

February 24th, 2019

Although not a fundamental thermodynamic variable, the Coefficient of Friction and other interface heat transfer coefficients are important surface variables. Did you know that the worldwide average coefficient of friction is estimated to be about 0.35 for moving pairs? With MHI devices www.mhi-inc.com we are trying hard to bring this down to almost 0.1. That means an energy savings of about 50EJ (EJ=10^18J) per year when successful. Wish to know more? Please see more details and references here https://mhi-inc.com/PG4/SurfaceroughnessandDeburringwithe-ionPlasma.htm

2/17//2019

Did you know, for most heat treatment, the ‘windows of opportunity’ for best processing outcomes are very small?  Whether heat treating steels, wood, ceramics or polymers, it is important that the treatment be very controlled. Such control is only provided by electric heating where power control can be easily tweaked. Towards this end, MHI Inc. uses the most sophisticated control systems employing SCRs, and less than ± 1C tunability and accuracy. Visit for example https://mhi-inc.com/product-category/71/ or https://mhi-inc.com/PG4/electronic-controllers-control-panels.html. A faulty heat treatment can lead to wrinkled sheet metal, missing the full bacterial control, low sinterability, macro-segregation and other defects that will reduce the effective life or efficacy of the final product. Proper thermal exposure often defines the highest quality of the final product.

2/10/ 2019

Did you know that the landscape of thermal engineering is undergoing a dramatic change? Some examples are microfurnaces to 1900C to replace large furnaces, steam generators that offer steam that can reduce energy and water consumption by 90%, or strong GlowPanelâ„¢ heat flux machines that can offer power densities in the MW/m2 range. All such technologies are now expanding our simulation of even extreme inter- terrestrial conditions, including plasma generation from just air. Please review thermal miniaturization on the page https://mhi-inc.com/MHIProduct.html. For high heat flux machines please go to https://mhi-inc.com/PG4/thermoplate-hot-plate.html.

2/3/19

The Boltzmann constant was introduced by Max Planck, but named after Ludwig Boltzmann. It sets up a relationship between energy and temperature, wavelength and temperature and also a relationship between voltage and temperature. This same constant also relates the microscopic details, or microstates of a system, to its macroscopic state with entropy S, thus making it the core idea of thermal statistical mechanics. Arguments still persist on whether it is a fundamental constant of the universe. Unlike the Planck's constant that defines space-timerelated measurements, the Boltzmann constant is thought to simply relate measurable quantities like temperature to more fundamental properties and variations like energy-change and entropy.

Did you know that the constant is set today at 1.380 x 10-23 J/K, but when first introduced, Max Planck set it to 1.346x10-23 J/K, about 2.5% lower than today's number!

1/27/19

The most liked colors: Blue and Red. Reference:https://www.thetoptens.com/top-ten-favorite-colors/.
The most liked numbers: 7, 3 and 8. Reference:https://www.scientificamerican.com/article/most-popular-numbers-grapes-of-math/.
The most liked sounds: Waves against rocks, Rain against the windows.
Reference:https://www.telegraph.co.uk/news/newstopics/howaboutthat/9503557/Top-50-most-loved-sounds.html.
The most liked smells. After it Rains. https://www.ranker.com/list/best-smells/jacob-shelton
Did you know? We pay attention to such small details for our customer relationships. 
https://mhi-inc.com/PG1/mhi-advantages.html

1/20/19

It took a long time for humans to understand heat, work and energy. Heat and Work are not properties of a material, but energy is a property, just like temperature and entropy are properties. Heat and Work are only recognized when thermal energy or work (like electron flow) crosses a boundary during a process. Heat is energy in transit, i.e. a part of “energy” in the process of transfer from hot to cold objects. Thermal energy comprises of the molecular level of kinetic, vibrational and rotational energy of all the particles in a material.

1/13/19

Materials Science Studies of Inorganic Hard Materials and Biological Studies of Soft Materials are perhaps converging. Some of the weirdest materials are those that repair themselves because of bacterial assisted reconstruction (apparently in use for cell phones). Nanotexture influences surface-friction (worldwide use is almost 100EJ/per year to overcome friction). Interestingly, biological texture of skin for overcoming friction and for vibro-sensing are now known to have wide ranging similarities. Hard surface nanostructure assisted bacterial tunability or survival also depends on the nano-curvature/texture. For an introduction to surface-texture see https://mhi-inc.com/PG4/SurfaceroughnessandDeburringwithe-ionPlasma.htm . Finally, hard icosahedral materials appear to show similar patterns as flowers and petals (IIMTrans-2019).

12/29/18

There was an earlier Global Warming period called the Paleocene–Eocene Thermal Maximum. This period has been linked to an initial 5 °C temperature rise and to extreme changes in Earth's carbon cycle. The exact age and duration of the event is uncertain but it is estimated to have occurred some 55.5 million years ago. Source: https://en.wikipedia.org/wiki/Paleocene%E2%80%93Eocene_Thermal_Maximum.

As a form of energy, heat has the Units of Joules (J) in the International System of Units (SI). The standard unit for the rate of heat transferred is the Watt (W), defined as one Joule per second. https://mhi-inc.com/Converter/energy-converter.html. More on Energy Conservation: link to https://mhi-inc.com/EnergyefficiencyLinksforGrants.htm

12/22/18

The reaction that uses up CO2 is called photosynthesis. [CO2 + H2O (steam/water) + photons(sunlight)] gives [ [CO2O] + O2]. The reaction product is sugars/carbohydrates. This reaction requires energy of a quanta that is available in visible and infrared spectral regions. Plants have special chemicals that absorb light of the right frequency for the reaction and enable photosynthesis. Photosynthesis, although a complex phenomenon, can be thought to occur in two stages. In the first stage, light-dependent reactions capture the energy of light and use it to make the energy-storage molecules ATP and NA-DPH. During the second stage, the light-independent reactions occur where the carbon dioxide is absorbed from the atmosphere. In particularly during hot and dry conditions, the CO2decreases and the oxygen gas produced by the light-enabled reactions of photosynthesis register an increase. Sugar is created as a byproduct of the photosynthesis process. The plant now has energy. This biomass (energy containing plant) is the organic material derived from plants and animals, - a source of recoverable energy and water. Steam gasification is often carried out for energy recovery. Another reaction with steam that can be used for the production of energy molecules is Methane Steam Reforming reaction (MSR). Here methane and steam can react CH4 + 2H2O ⇔ CO2 + 4H2. Read more in https://mhi-inc.com/superheated_steam/steam-calculator-superheated-tables.html

12/15/18

Units Conversion Calculator All Units Conversion
Watt Calculator Energy and Power Examples
Steam Calculator and Superheated Steam Enthalpy and Entropy of Saturated and Superheated Steam
Flow vs. Power. Airtorchâ„¢ Model Selection Parameters
Radiation and Microheater Calculator. Radiation Colors.
Robust Radiator Calculator. Selection Parameters
Hardness Conversion. Hardness Scales
Grit to Micron Conversion. Particulate Units

12/09/18

The new technologies of high temperature processing enable unusual productivity and efficiency. For example, one can make high quality diamonds in a tube furnace https://mhi-inc.com/PG4/horizontal-tube-furnace.html#t-2. Or one can recover precious materials like palladium. Consider brazing, like the 4DBrazing® - faster brazing in a simple high temperature standard tube furnace is sometimes feasible without using expensive and large braze furnaces. Instant gas cooling is possible with SIMGAS (https://mhi-inc.com/PG4/gas-mixing-system.html).

12/1/18

The basis for high temperature superheated steam applications is because of the unique properties of steam-gas.
Heating: Steam offers heat transfer coefficients that are very high. The heat content is also very high. Steam dries faster than air above the inversion point.
Antimicrobial: Dry high quality, low-oxygen steam is a known antimicrobial agent without any organic residue.
Chemical: Many steam reactions are beneficial for energy production and biomass. Superheated steam offers high kinetics.
Penetration: Steam as it condenses, continues to wick. This is why steam heaters never required pressure driven flow pushers.
Please check out steam products on 
https://mhi-inc.com/superheated_steam.html#side-tab

2/3/19

The Boltzmann constant was introduced by Max Planck, but named after Ludwig Boltzmann. It sets up a relationship between energy and temperature, wavelength and temperature and also a relationship between voltage and temperature. This same constant also relates the microscopic details, or microstates of a system, to its macroscopic state with entropy S, thus making it the core idea of thermal statistical mechanics. Arguments still persist on whether it is a fundamental constant of the universe. Unlike the Planck’s constant that defines space-time measurements, the Boltzmann constant is thought to simply relate measurable quantities like temperature to more fundamental properties and variations like energy-change and entropy.

Did you know that the constant is set today at 1.380x10-23 J/K, but when first introduced, Max Planck set it to 1.346x10-23 J/K, about 2.5% lower than today's number!

1/20/19

It took a long time for humans to understand heat, work and energy. Heat and Work are not properties of a material, but energy is a property, just like temperature and entropy are properties. Heat and Work are only recognized when thermal energy or work (like electron flow) crosses a boundary during a process. Heat is energy in transit, i.e. a part of “energy” in the process of transfer from hot to cold objects. Thermal energy comprises of the molecular level of kinetic, vibrational and rotational energy of all the particles in a material.

1/13/19

Materials Science of Inorganic Hard Materials and Biological Studies of Soft Materials are perhaps converging. Some of the weirdest materials are those that repair themselves because of bacterial assisted reconstruction (apparently in use for cell phones). Nanotexture influences surface-friction (worldwide use is almost 100EJ/per year to overcome friction). Interestingly, biological texture of skin for overcoming friction and for vibro-sensing are now known to have wide ranging similarities. Hard surface nanostructure assisted bacterial tunability or survival also depends on the nano-curvature/texture. For an introduction to surface-texture see https://mhi-inc.com/PG4/SurfaceroughnessandDeburringwithe-ionPlasma.htm . Finally, hard icosahedral materials appear to show similar patterns as flowers and petals (IIMTrans-2019).

12/29/18

There was an earlier Global Warming period called the Paleocene–Eocene Thermal Maximum. This period has been linked to an initial 5 °C temperature rise and to extreme changes in Earth's carbon cycle. The exact age and duration of the event is uncertain but it is estimated to have occurred some 55.5 million years ago. Source: https://en.wikipedia.org/wiki/Paleocene%E2%80%93Eocene_Thermal_Maximum.

As a form of energy, heat has the Units of Joules (J) in the International System of Units (SI). The standard unit for the rate of heat transferred is the Watt (W), defined as one Joule per second. https://mhi-inc.com/Converter/energy-converter.html. More on Energy Conservation: link to https://mhi-inc.com/EnergyefficiencyLinksforGrants.htm

12/22/18

The reaction that uses up CO2 is called photosynthesis. [CO2 + H2O (steam/water) + photons(sunlight)] gives [ [CO2O] + O2]. The reaction product is sugars/carbohydrates. This reaction requires energy of a quanta that is available in visible and infrared spectral regions. Plants have special chemicals that absorb light of the right frequency for the reaction and enable photosynthesis. Photosynthesis, although a complex phenomenon, can be thought to occur in two stages. In the first stage, light-dependent reactions capture the energy of light and use it to make the energy-storage molecules ATP and NA-DPH. During the second stage, the light-independent reactions occur where the carbon dioxide is absorbed from the atmosphere. In particularly during hot and dry conditions, the CO2decreases and the oxygen gas produced by the light-enabled reactions of photosynthesis register an increase. Sugar is created as a byproduct of the photosynthesis process. The plant now has energy. This biomass (energy containing plant) is the organic material derived from plants and animals, - a source of recoverable energy and water. Steam gasification is often carried out for energy recovery. Another reaction with steam that can be used for the production of energy molecules is Methane Steam Reforming reaction (MSR). Here methane and steam can react CH4 + 2H2O CO2 + 4H2. Read more in https://mhi-inc.com/superheated_steam/steam-calculator-superheated-tables.html

12/15/18

Units Conversion Calculator All Units Conversion
Watt Calculator Energy and Power Examples
Steam Calculator and Superheated Steam Enthalpy and Entropy of Saturated and Superheated Steam
Flow vs. Power. Airtorchâ„¢ Model Selection Parameters
Radiation and Microheater Calculator. Radiation Colors.
Robust Radiator Calculator. Selection Parameters
Hardness Conversion. Hardness Scales
Grit to Micron Conversion. Particulate Units

12/09/18

The new technologies of high temperature processing enable unusual productivity and efficiency. For example, one can make high quality diamonds in a tube furnace https://mhi-inc.com/PG4/horizontal-tube-furnace.html#t-2. Or one can recover precious materials like palladium. Consider brazing, like the 4DBrazing® - faster brazing in a simple high temperature standard tube furnace is sometimes feasible without using expensive and large braze furnaces. Instant gas cooling is possible with SIMGAS (https://mhi-inc.com/PG4/gas-mixing-system.html).

12/1/18

The basis for high temperature superheated steam applications is because of the unique properties of steam-gas.
Heating: Steam offers heat transfer coefficients that are very high. The heat content is also very high. Steam dries faster than air above the inversion point.
Antimicrobial: Dry high quality, low-oxygen steam is a known antimicrobial agent without any organic residue.
Chemical: Many steam reactions are beneficial for energy production and biomass. Superheated steam offers high kinetics.
Penetration: Steam as it condenses, continues to wick. This is why steam heaters never required pressure driven flow pushers.
Please check out steam products on 
https://mhi-inc.com/superheated_steam.html#side-tab1

11/27/18

Did you know that fundamental constants are being redefined?

The Consultative Committee for Thermometry (CCT) has noted that the current definition of temperature is unsatisfactory for temperatures above 1,300 K (1,030 °C or 1,880 °F). The Boltzmann constant (same units as entropy) provides a better basis for temperature measurement than older basis which was the triple point of water. The kilogram, ampere, and mole are now defined by setting exact numerical values for the Planck constant (h=6.62607015×10
−34 joule-second (J•s).), the elementary electric charge (e= 1.602176634×10−19 coulomb (C)), the Boltzmann constant (k=1.380649×10−23 joule per kelvin (J•K−1)), and the Avogadro constant (NA=6.02214076×1023 reciprocal mole (mol−1)). Does it impact MHI thermal calibration? https://mhi-inc.com.

11/11/28

Hardest Material: Wurtzite boron nitride. Slightly harder than natural diamond.
Light Colors: Furnace Red (~1000K-2000K), Soft White (2700K – 3000K), Bright White (3500K – 4100K), and Daylight/Sunlight (5000K – 6500K).
Highest Reported Energy Efficiency for Steam Use: OAB® or HGA™ steam generators
Continuous Air Plasma: Cascade e-ion™
Lowest Reported Dynamic Friction: Zwitterionic for Organic and Aluminum Magnesium borides for Inorganic.
Softest Mineral: Soapstone Comparing Density of Iron: Cast Iron 7300kg/m3, Mild Steel 7700Kg/m3. So why do cast iron dishes seem heavier? 
Answer.
Lowest Density Solid: Graphene Aerosol 160Kg/m3
Highest Density Solid: Osmium 22600Kg/m3 

11/08/18

Nowadays, heating elements are made from a variety of novel silicides, aluminides and carbides and other materials like doped tungsten. In the future, nanomaterials like the GAXP will become more important. 

Did you know that Edison's first electric heating element for lighting was made from carbonized cotton and bamboo? 
Learn More about Microheater materials, especially the GAXP and GAXP-IgMp that are used in air.

Sat, Nov 10, 2018

Hardest Material: Wurtzite boron nitride.  Slightly harder than natural diamond.

Light Colors:  Furnace Red (~1000K-2000K), Soft White (2700K – 3000K), Bright White White (3500K – 4100K), and Daylight/Sunlight (5000K – 6500K).

Highest Reported Energy Efficiency for  Steam Use:  OAB® or HGA™ steam generators

Continuous Air Plasma:  Cascade e-ion™

Lowest Reported Dynamic Friction:  Zwitterionic for Organic and Aluminum Magnesium borides for Inorganic.

Softest Mineral: Soapstone

Comparing Density of Iron: Cast Iron 7300kg/m3, Mild Steel 7700Kg/m3. So why do cast iron dishes seem heavier?  Answer.  Most cast iron dishes are much thicker than mild steel dishes and that is why they are heavier.

Lowest Density Solid:  Graphene Aerosol 160Kg/m3

Highest Density Solid:  Osmium 22600Kg/m3

Sat, Nov 3, 2018

When water molecules exist in a gaseous-state at a temperature above the boiling temperature of water, it is called the superheated steam-state. When at the boiling-temperature, the steam is called saturated steam. The boiling temperature depends on the pressure (e.g. 100°C for 1 atmosphere, or 134°C for 3 atmosphere and so on).

The main difference in the phase-state between saturated and superheated steam is that saturated steam can contain water droplets, whereas the higher-temperature superheated steam, even up to 1300C, is a high enthalpy gas with considerably more work potential that saturated steam. Work potential enables mechanical work and chemical reactions. 

Did you know that superheater steam made by instant MHI steam generators can possibly improve the energy efficiency to over 90% of the current usage in applications ranging from biomass production to textile-fiber improvements? Over the past two years, prices have fallen drastically for steam generators.
https://mhi-inc.com/superheated_steam.html.

Issue 5 Vol. 25 October 28th, 2018

Creep and Creep-Fatigue Interactions limit the roof- span of high temperature furnaces. Now, with the availability of NanoFractalAlumina™ materials - very long roof spans (non-sag roofs for years) are routinely offered by modern furnace manufacturers. Examine what large roof span furnaces look-like by clicking to https://mhi-inc.com/PG4/front-loading-furnace.html#t-0. Greatly improved energy efficiency comes from non-sag roofs https://mhi-inc.com/reasons.html.

Sun, Oct 21, 2018

X  -ray diffraction, Electron diffraction, and Neutron diffraction are ways to probe the atomic and magnetic structure of matter with radiation (wave). Each type of beam-wave is diffracted by a different scattering event in the matter which makes them all useful in different ways to probe the atomic and crystal structure. The beams were all discovered in the period 1895-1932. Each discovery had interesting events associated with the it.

Did you know a husband and wife team discovered X-rays? Anna Bertha Roentgen, the wife of Wilhelm Conrad Roentgen, professor at the University of Wurzberg, the discoverer of X-rays in 1895 teamed with him to discover X-rays. It was the image of Bertha's hand, which her husband X-rayed, that helped them prove that he had discovered something no one had ever previously seen. When she underwent the worlds first x-ray on a human, on Dec. 22, 1895, Anna Bertha exclaimed, I have seen my death on seeing the ghostly image of bones and a ring when imaged. Today X-Ray imaging and diffraction can be done at very high temperatures with micro-modules https://mhi-inc.com/PG4/fiber-heater-microheater.html

Issue 5 Vol. 24 October 14th, 2018

Did you know that to reduce the global temperature one may have to improve energy efficiency of processes by using very high temperature clean products?

See https://mhi-inc.com/EnergyefficiencyLinksforGrants.htm and https://mhi-inc.com/MHIProduct.html.

Volume 5 Issue 23 | September 29th, 2018

We use about 500EJ of energy per year.

1 ExaJoule = 1,000,000,000,000,000,000 Joules. This amount is growing rapidly, while the qualityof available energy is decreasing https://mhi-inc.com/EnergyefficiencyLinksforGrants.htm. All of us must do our part for better management of energy. One way is by utilizing Smart Thermal devices like the OAB®, Airtorch™ and GAXP©. These contain new materials that enable machines and devices to reduce the end-use energy required for a defined objective considerably. Smart, Efficient, and Sustainable devices and materials are the key to success. Computers were miniaturized with smart materials.

Sun, Sep 23, 2018 

What is commonly known as heat radiation lies in the Infrared part, the longer-than-light wavelengths. For solving engineering problems related to heating by radiation, it is a common assumption to consider emissivity as independent of wavelength. Such an approximation is called the grey-body approximation. Grey-body approximations are commonly made across the infrared spectrum. The Stefan-Boltzmann Law suggests that radiation heat transfer is proportional to T^4 where T is the temperature in Kevin. Wien’s law relates this temperature to a maximum wavelength, Lmax, in the wavelength spectrum of a black-body.

Did you know that recent results have begun pointing to a shift in the T^4 law when features below Lmax are associated with the surface? These are typically Nano-scale features below ~1 micron. MHI patents and products optimize heat transfer rate. See for example, the GAXP® heating elements https://mhi-inc.com/PG3/high-temperature-heating-elements.html

Sat, Sep 15, 2018

Photons are packets of energy. The packet energy increases across the regions of microwave-infrared- yellow- blue- ultraviolet – X-Rays in ascending order. A photon of Ultraviolet (UV radiation) has a lot more energy than a photon of InfraRed (IR). The heat we feel from sunlight is the infrared because sunlight has a high intensity of IR. We see only Blue to Red which lies between UV and IR with our eyes. Also, it is this IR that can cause molecular vibration in our skin-moisture, so we feel this as heat. UV can actually break apart molecules and be more dangerous as it penetrates deeper - but we may not “feel” it till we are badly sunburnt. More on radiation on https://mhi-inc.com/freeradiationpowercalculator.htm.

Did you know that an average human body emits about 100 Watts of radiation at 37°C, mostly in the IR region? Did you know that detecting human body movement requires sensors that are particularly sensitive in the IR regions? Night vision goggle have a type of feature that accentuates IR and converts it to a visible frequency which the eye can detect.

Sat, Sep 8, 2018

Temperature and heat are the parameters that relate to the inherent thermal energy of an object. The average temperature (measured by a thermometer) is a measure of the average energy of kinetic/vibrational/rotational/oscillatory motion of small particles like atoms that have mass, or of photon energy (radiation) that has no mass. Heat is defined as flow of thermal energy from an object at a higher temperature to an object at a lower temperature.

Did you know? The efficiency of obtaining the maximum work from thermal energy is determined by the hot and cold temperatures between which heat may flow. The simple second law of thermodynamics caps this efficiency to (1-Tcold/Thot). If you burn fossil fuel, the best efficiency is ~50-85% for achieving a work objective. With electric energy, efficiency for an objective can be closer to 100% during conversion. Sunlight to direct electrical work is ~35-44%. For a quick review of thermodynamics, look up 
https://mhi-inc.com/Converter/watt_calculator.htm and learn about the many temperature scales!

 

Volume 5 | September 1st, 2018

Microheaters reflect a miniaturization of thermal technology. The most effective use is when moving from batch to continuous operations in a variety of applications listed in https://en.wikipedia.org/wiki/Microheater. Continuous processing reduces waste, reduces inventory, increases productivity, and most importantly, often reduces energy expenditure. Did you know that sometimes over 90% energy cost savings are possible just by the correct choice of heating element materials? https://mhi-inc.com/reasons.html.

Issue 5 Vol. 20 August 20th, 2018

When considering high temperature-use devices, one has to design with 'creep' in mind. Creep is the reason why materials slowly sag . Only happens at high temperatures of use, generally at higher than about half the melting point in Kelvin. Did you know that MHI furnaces offer high roof-spans with nanofractal roof-hangers patented by MHI?https://mhi-inc.com/PG4/high-temperature-lab-furnaces.html

Issue 5 Vol. 17 Aug 4th, 2018

Did you know one can now use steam to 1500K i.e., about 1000K more than what was available in the early 1800's for bulk steam use?

Good high temperature steam is colorless. Although steam power was creatively used in the 1800’s, it is only now that the subtle power of high temperature steam is opening new possibilities in a variety of applications like clean-cooking to clean rapid-acting antimicrobial uses. Review cleaning examples on bayzi.com.

Volume 5 Issue 17 | July 10th, 2018

Did you know that Surfaces can be optimized for emission and reflection to meet specific objectives?

Ice (a solid) reflects a much larger fraction of sunlight than water which reflects only ~ 6% of the incident solar radiation. Technically speaking, this happens because of the extinction coefficient and the refractive index differences between a liquid and solid. Sea-ice is important to prevent warming because it reflects sunlight (50-70%), thereby reducing the amount of energy absorbed at the surface. The change in the amount absorbed when there is less ice formation changes the pattern of water-currents/circulation.  An interesting observation is that snow (a semi-solid) can reflect ~90% of the incident solar radiation - even more than ice! This is related to surface roughness and correlation length differences when comparing snow and ice surfaces. MHI radiators www.mhi-inc.com are surface optimized and patented for obtaining the best efficiencies.

Volume 5 | June 25th, 2018

  • 125,000 BC, control of fire by humans. Reference Wikipedia.

  • Then tens of thousands of years later ~3000 BCE, the first candles are invented.

  • Somewhere between 2000 BCE to 1 BCE, nano-icosahedral, copper-tin alloys for reflection across the entire light and IR spectrum.

  • Almost 1000+ years later in 1792 William Murdoch produces the first gas-light and controlled heater.

  • 1809 Humphry Davy publicly demonstrates first electric lamp for over 10,000 lumens. He uses a platinum strip. One candle power ~12.5 lumens.

  • 1883 Edison produces a ~16-watt (power) lightbulb that lasts over a thousand hours. The first filament was made of carbon. Required a good vacuum.

  • 1926 Edmund Germer invents the fluorescent lamp.

  • 1995 Shuji Nakamura reportedly invents the first practical blue light LED (Blue is a High Energy Wavelength)

MHI’s Microheaters are the first GAXP® Nanotechnology Heaters and Glow

Issue 5 Vol. 9 June 11th, 2018

The Centigrade temperature scale was developed by Anders Celsius (1701–1744) by separating the melting point (~0°C) and boiling point of water (~100°C) by 100 degrees. Daniel Gabriel Fahrenheit (1686–1736) developed the Fahrenheit scale, also by assuming that 100 degrees separated the coldest and hottest temperatures in a year yet understanding but pegging the fixed points on the scale to a thermodynamic invariant temperature, ice-water-ammonium chloride equilibrium (0°F), ice-water equilibrium (32°F), and body temperature (~98°F). The mercury-thermometer was mainly invented by a Danish experimental-mathematician Ole Christensen Romer (1644-1710) with Fahrenheit’s input. Romer was also the first to quantitatively measure the speed of light, introduce standardized street-lighting and improve nautical navigation with high precision instruments. Today we use thermocouples, thermistors and semiconducting materials with a known band-gap for the accurate measurement of temperature. We also define the lowest possible temperature (0° K) with a Kelvin (or SI) temperature-scale named after William Thompson Kelvin.

Did you know we also use Rankine, Romer, Newton, Delisle and Reaumur temperature-scale(s) for temperature measurement? And also a Planck temperature-scale that ranges from 0-1 (Tp) where 0 (Tp) = 0(°K) and 1 (Tp) = 1.416×10^32 (°K). More about thermodynamics and Planck energy on MHI Watt Calculator.

Volume 5 Issue 13 | May 14th, 2018

Materials and Extreme Temperatures

The ability of materials to withstand high or low temperatures and strong temperature gradients is significantly important. In the not so distant past, ships made of some types of steel were found to be prone to extreme brittleness when operating in very cold waters. So scientists discovered new steel alloys which allowed ships to navigate in cold climates. New Molybdenum diSilicide alloys are able to operate in air without significant oxidation even to 1900 degrees Celsius.

Significant temperature variations also occur across our planet. The highest recorded temperature on earth was 56.7°C (134°F) according to the Guinness World Records. The lowest temperature ever recorded on the surface of our planet earth was −89.2 degrees Celsius (−128.6 degrees Fahrenheit) according to Wikipedia. The core temperature at the center of the earth? This temperature varies between 5,000 and 7,000 degrees Celsius (about 9,000 and 13,000 degrees Fahrenheit) according to a National Geographic report. But not everything is vaporized at these high temperatures. The very high pressures at the core support the existence of many commonly known materials (like iron) even at these ultra-hot temperatures.

MHI makes active thermal Fiberfree™ materials that can withstand 2300 degrees Celsius. Thermal devices made from such materials allow for modern energy efficient devices such as steam generators! See examples on www.mhi-inc.com.

Volume 5 Issue 13 | May 14th, 2018                    same as above

Volume 5 | March 26th, 2017

Did you know one can make a cup of tea with a tiny solar heater that is rated for 20 Watts and uses power from a small battery? Learn More about Microheaters

May 16th, 2017

Although it is not clear who invented the first radiant furnace for industrial use, it appears that the first use was around circa 1850. A good furnace today is considered one that produces no emissions when the heat is generated, offers controlled heat-up features, and provides good fiberfree™ insulation for energy efficiency and safety. Did you know that any surface at a temperature of 1500C emits radiation of almost 560kW/m2 – a very high amount compared to an average gas flame averaged over its emissive area? Read More...?

Volume 4 | May 1st, 2017

Did you know that Thomas Edison’s first electric heating element was made from carbonized cotton and bamboo? Learm More about Microheaters

September 24th, 2018

What is commonly known as heat radiation lies in the Infrared part, the longer-than-light wavelengths. For solving engineering problems related to heating by radiation, it is a common assumption to consider emissivity as independent of wavelength. Such an approximation is called the grey-body approximation. Grey-body approximations are commonly made across the infrared spectrum. The Stefan-Boltzmann Law suggests that radiation heat transfer is proportional to T^4 where T is the temperature in Kevin. Wien’s law relates this temperature to a maximum wavelength, Lmax, in the wavelength spectrum of a black-body.

Did you know that recent results have begun pointing to a shift in the T^4 law when features below Lmax are associated with the surface? These are typically Nano-scale features below ~1 micron. MHI patents and products optimize heat transfer rate. See for example, the GAXP® heating elements https://mhi-inc.com/PG3/high-temperature-heating-elements.html

 

September 8th, 2018

Temperature and heat are the parameters that relate to the inherent thermal energy of an object. The average temperature (measured by a thermometer) is a measure of the average energy of kinetic/vibrational/rotational/oscillatory motion of small particles like atoms that have mass, or of photon energy (radiation) that has no mass. Heat is defined as flow of thermal energy from an object at a higher temperature to an object at a lower temperature.

Did you know? The efficiency of obtaining the maximum work from thermal energy is determined by the hot and cold temperatures between which heat may flow. The simple second law of thermodynamics caps this efficiency to (1-Tcold/Thot). If you burn fossil fuel, the best efficiency is ~50-85% for achieving a work objective. With electric energy, efficiency for an objective can be closer to 100% during conversion. Sunlight to direct electrical work is ~35-44%. For a quick review of thermodynamics, look up 
https://mhi-inc.com/Converter/watt_calculator.htm and learn about the many temperature scales!

August 26th, 2018

Fibers are made "naturally" like our human-hair (~25 micrometers) or by spinning like a silkworm does - each silkworm spins about a kilometer of fiber - or are made "artificially" by drawing-down glass at high temperatures. Did you know optical fibers are about a quarter of the diameter of human hair? Fibers and fiber bundles are useful for information transmission (optical fibers) or are used to reinforce brittle solids (carbon fibers) or just spun into textile-like sheets. Many laboratories have Fiberheaters or Microtube heaters that can heat fibers and fiber bundles to temperatures that enable stretching, tapering and bonding.

August 11th, 2018

Who were the scientists who set in motion our understanding of energy? Why should we be efficient? Did you know a very simple idea led to our understanding of the fundamental laws of energy use that allows us to answer such questions? Visit https://mhi-inc.com/EnergyefficiencyLinksforGrants.htm

July 28th, 2018

Did you know that high temperature often speeds up all reactions in an exponential manner?

High productivity comes from doing things at a high temperature. There are two types of reactions – spontaneous and those which require energy to cause them to occur. Regardless, both require some form of activation- a hill to climb before rolling down. Some reactions, though spontaneous, are very slow unless the temperature is increased- think of it as overcoming the inertia. Use the calculator and information on 
http://mhi-inc.com/superheated_steam/steam-calculator-superheated-tables.html for more information.

July 14th, 2018

Centigrade (C) and Fahrenheit (F) temperatures are the same at -40 degrees (- 40° F = - 40° C).
Did you know that the importance and cost effectiveness of using non-gaseous phases of air are now well recognized. Solid, liquid, gas or plasma are the common phases of matter.
Making Liquid-Air is becoming very important for a variety of applications. Liquid-Air (~78.1% Nitrogen, 21.0% Oxygen, 0.9% Argon and very small amounts of other rare gases ) boils between the temperature of liquid Nitrogen (-195.79 °C) and liquid Oxygen at (-182.9 °C).
On the warmer side, the use of Air-Plasma is also gaining importance. See 
MHI Plasma devices.

July 2nd, 2018

The world today has approximately 7 Billion People. All living things employ energy to survive. 
The annual energy consumption is ~500EJ/A ( Exajoules/Annum). This is currently expected to peak at~600EJ/A in the year 3030. 
Most of savings in energy will come from smart machines that use lesser energy for the same objective (e.g. 
www.mhi-inc.com
More significant energy savings are expected in the future from tribological improvements (~ 100EJ/A, just with new surface technologies)

Did you know? Just sunlight alone brings in 2.5 Million EJ/A! So we will always have at least one source of energy for a long time to come.

June 18th, 2018

Wet Steam: When water particles are suspended in it. Generally not-good for antimicrobial use.

100% Dry Quality Steam: This is superheated dry steam with no water particles.
http://mhi-inc.com/superheated_steam.html

Fun Fact: Steam gas always is self-propelling because steam condenses at the steam front to almost 1000 times a lesser volume causing low pressure.

Steam Boilers appeared in 19th century
 and are still used, but produce steam very slowly. Today, instant-steam generators like the OAB allow steam to be turned on/off on demand. 
http://mhi-inc.com/NewOABModels.htm

Did you know? A very early article circa 1925 was able to speak about the benefits of 
superheated steam over saturated steam but only recently has true dry-quality superheated steam become commonly available. Now steam to 1300C may be instantly generated.

June 4th, 2018

When a solid material is hot, it has more thermal energy than when it is cold. When hot, the atoms increase their vibrational amplitude. When the amplitude of vibration increases, the average distance between molecules also increases. As the atoms get farther apart, all dimension increase. The coefficient of (volume) expansion is the change in volume per unit volume per degree change in temperature. One can imagine how metals (which have lower bond strength than non-metal solids) expand more with the same rise in temperature. The expansion coefficient is of the order of 10^-5 to 10^-6 per Kelvin. Smart thermal systems and devices, like the ones available on www.mhi-inc.com, are designed with a careful eye towards managing all expansion forces, so that there is very little bending or delamination. Did you know our universe is expanding.... yet cooling at the same time? And curiously enough... when water is heated betwee n 0 °C and 4 °C it actually shrinks!

Sun, May 20, 2018 

Did you know how vastly varied is the scale of roughness that we encounter on earth?
Deepest ocean trench: 10.994 Km (Km-Kilometer)
Highest mountain: 8.850 Km
Human scale: ~1 m (m-meter)
Pencil tip: ~1 mm (mm-millimeter)
Grain of salt: ~0.1-1 mm
Bacterium: ~1-10 micrometer
Electrons: ~10^-7 nm (nanometer) (^ indicates - raised to the power of)
Planck's length (quarks): ~10^-26 nm (smallest scale that is believed to exist in space-time)
A considerable amount of high temperature research involves roughness measurements. MHI takes advantage of texture features to construct its thermal products. 
http://mhi-inc.com/

Sun, May 6, 2018

Nano materials display grain sizes that are at the level of a thousandth of a human hair.

Nano materials in the past were predominantly used in soft organic matter and products. All this has changed with the new class of commercial hard nano-materials. These offer properties such as stable thermal emissivity at temperatures higher than 1000C, extraordinary life against corrosion and erosion, very novel tunable texture properties, and even antimicrobial properties. See for example some of the information posted on 
here. MHI is happy to provide significant energy savings with its new patented hard nano-materials used in various MHI products.

Sun, Apr 22, 2018 

How much CO2 do humans produce when breathing? The average human exhales about 2-3 pounds of carbon dioxide (human activity averages at about 100 Watts or 0.36 BTU/hr) on an average day (about 15- 20 lbs. a week). The exact quantity depends on the activity level (higher activity, more CO2 exhaled). The amount of carbon that a human breathes out is almost exactly equal to the amount of carbon a human takes in (from food), minus the amount of carbon that contributes to the person's body mass. Thus the amount of CO2 that humans exhale is roughly balanced by the amount absorbed by plants and other photosynthesis-type reactions. However, note that the human population is roughly ~ 7.5 Billion people. Thus preserving forests, using renewable sources for energy and not using combustion as an energy source is important for balance.

More information

Sun, Apr 8, 2018

Did you know that sometimes a higher-temperature item placed in a refrigerator can freeze faster compared to an identical lower-temperature item when placed in the same refrigerator at the same time.

You can do this experiment! It is a real effect named after a graduate student, Mpemba. More about energy from 
http://mhi-inc.com/EnergyefficiencyLinksforGrants.htm and more about the Mpemba effect from https://en.wikipedia.org/wiki/Mpemba_effect

Microheaters | Airtorch™| Heating Elements | Furnace and Furnace Accessories| Thermoplate | Microheater | Robust Radiator™ | Fiber Heater | Silicon Carbide Elements | Superheated Steam Generators | Plasma |Nano Products Electric Control Panels